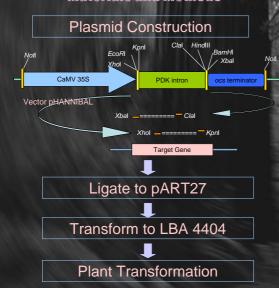
Construct Design for Downregulation of Caffeoyl-Coenzyme A *O*-Methyltransferase and Cinnamate-4-Hydroxylase in *Acacia* Hybrid

Pang, S.L.^{1⊠}, Choong, C.Y.¹, Wickneswari, R.¹, Zamri, Z.² & Kodi Isparan, K.³

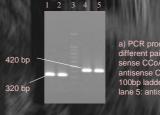


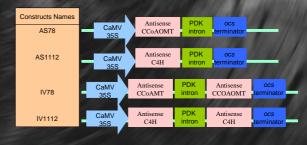
1 School of Environmental and Natural Resource Sciences, Universiti Kebangsaan Malaysia 2 School of Bioscience and Biotechnology, Universiti Kebangsaan Malaysia 3 Forest Research Institute Malaysia 赵: callashasha @gmail.com

Introduction

Lignin has significant commercial value and modified-lignin transgenics can provide improved raw materials for pulp and paper industry and agricultural uses. Downregulation of cinnamate-4-hydroxylase (C4H) from *Medicago sativa* in tobacco resulted in significant reduction in lignin content with apparent decreases in their S (syringyl)/G (guaiacyl) ratio (Sewalt et al., 1997). Antisense of caffeoyl-coenzyme A *O*-methyltransferase (CCoAOMT) was transformed to *Populus tremula x Populus alba plants*, and the results showed reduction of 68% in CCoAOMT activity and 45% in lignin content, relative to the controls (Zhong et al., 2000). Most of the lignin downregulation studies use sense or antisense constructs which usually result in only a modest proportion of silenced individuals. Recent studies have demonstrated the use of constructs encoding self-complementary hairpin' RNA (hpRNA) to efficiently silence genes (Wesley et al., 2001). In this study, downregulation of lignin genes is attempted using both antisense and intron-spliced hpRNA constructs.

Materials and Methods





Pasults and Discussion

a) PCR products produced by different pairs of primers. Lane 1: sense CCoAOMT, lane 2: antisense CCoAOMT, lane 3: 100bp ladder, lane 4: sense C4H, lane 5: antisense C4H.

b) PCR fragments were digested with selected restriction enzymes and ligated to vector pHANNIBAL. Four different constructs are shown as follow:

c) Hairpin structure predicted to form in IV 78 and IV1112 mRNA.

Acknowledgements

Special thanks to CSIRO (Commonwealth Scientific and Industrial Research Organization Plant Industry, Canberra, Australia) for providing pHANNIBAL and pART27 vectors. This work was supported by IRPA grant 01-02-02-0010-PR0003/03-01 from the Ministry of Science, Technology and Innovation, Malaysia.

References

Sewalt, VH.J., Ni, W., Blount, J.W., Jung, H.G., Howles, P.A., Masoud, S.A., Lamb, C. & Dixon, R.A. (1997). Reduced lignin content and altered lignin composition in transgenic tobacco down regulation in expression of phenylalanine ammonialyase or cirrnamate 4 hydroxylase. Plant Physiology 115: 41-50.

Westy, S.V., Helliwell, C.A., Smith, N.A., Wang, M.B., Gooding, P.S., Singh, S.P., Abbott, D., Stoutjesdijk, P.A., Robinson, S.P. Green, A.G. & Waterhouse, P.M. (2001). Construct design for efficient, effective and highthroughput gene silencing in plants. *The Plan* Journal 27(6): 581-590.

Zhong, R., Morrison III, W.H., Himmelsbach, D.S., Poole II, F.L. & Ye, Z.H. (2000). Essential role of calfeoyl coenzyme A O-methyltransferase in lignin biosynthesis in woody poplar plants. Plant Physiology 124: 563–577.