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ABSTRACT  

This paper deals with a slightly perturbed circular crack, Ω in the three dimensional plane. The 
problem of finding the resulting shear forces can be formulated as a hypersingular integral 
equation over a considered domain. Conformal mapping is used to transform the integral 
equation into a similar equation over a circular region, D. By making a suitable representation 
of hypersingular integral equation, the problem is reduced to solve a system of linear 
equations. The system is solved numerically for the  unknown coefficients, which  will later be 
used in determining the antiplane shear mode stress intensity factor. Comparison of the 
numerical solutions with the existing asymptotic solutions show a good agreement. 

Keywords: hypersingular integral equation; conformal mapping; stress intensity factor 

 
ABSTRAK  

Dalam makalah ini dibincangkan retakan bulat sedikit terusik, Ω, dalam satah tiga dimensi. 
Masalah mencari tegasan ricih boleh diformulasikan sebagai persamaan kamiran hipersingular 
ke atas domain yang dipertimbangkan. Pemetaan menyebentuk dijanakan untuk 
mentransformasikan persamaan kamiran kepada suatu persamaan yang serupa ke atas kawasan 
bulat, D. Dengan membuat perwakilan persamaan kamiran hipersingular yang sesuai, masalah 
tersebut diturunkan kepada menyelesaikan sistem persamaan linear. Sistem ini diselesaikan 
secara berangka untuk menentukan pekali anu yang akan digunakan untuk menentukan faktor 
keamatan regangan bagi mod ricih anti-satah. Perbandingan keputusan berangka dengan 
penyelesaian asimptot yang sedia ada menunjukkan kesamaan.  

Kata kunci: persamaan kamiran hipersingular; pemetaan menyebentuk; faktor keamatan 
regangan   

                       

1. Introduction  

Fracture mechanics is an important tool for the analysis of cracked bodies and is introduced in 
order to analyse the relationship among stresses, cracks and fracture toughness which used in 
a wide range of industries. Different approaches have been used by many researches in 
finding the stress intensity factor along the crack edges and crack tips (Sneddon 1946; 
Theocaris & Ioakimides 1970; Weaver 1977; Tan 1983; Linkov & Mogilevskaya 1994; Zhu 
et al. 2001; Qin et al. 2008; Nik Long & Eshkuvatov 2009; Nik Long et al. 2011).   

Potential method was adopted by Cruse (1969) in finding the solution of the unknown 
surface tractions and displacements in three dimensional electrostatic. Further, He (1973) 
applied the numerical procedure based on the boundary integral equation method in solving a 
penny shaped crack problem. The Somigliana formula is used by Guidera and Lardner (1975) 
to reduce an arbitrary elastic crack problem to a system of three integral equations for the 
components of displacement discontinuity. Moreover, the integral equations are solved 
explicitly for stresses and stress intensity factor for a penny shaped crack located in an infinite 
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isotropic medium with the crack faces are subjected to arbitrary tractions.  Mastrojannis et al. 
(1979) formulated the planar crack problem to the solution of a system of two dimensional 
Fredholm integral equation and solved numerically for determining the normal mode stress 
intensity factor. Cotterell and Rice (1980) used the perturbation method accurate to the first 
order in the derivation of stress intensity factors and his work can be extended to find the 
energy release rate at the tips of two dimensional kinked or slightly curved cracks. Similar 
approach can also be found in Rice (1985), Gao and Rice (1987) and Gao (1988). Another 
approach in solving a nearly circular crack can be found in Borodachev (1993). The almost 
circular cracks is solved by reducing the first kind Fredholm two dimensional integral 
equation of spacial problems of the theory of crack using the Fr´echet derivative of some 
nonlinear operator and variational formula. In particular, a solution of almost circular crack 
subjected to normal loading based on the inversion formula is obtained. Astiz (1986) derived 
a singular triangular element to compute the stress intensity factor along the crack border. Qin 
and Tang (1993) adopted the finite-part integral method in the derivation of a set of 
hypersingular integral equations and obtained the numerical results for the crack opening 
displacement and tensile mode stress intensity factor for the arbitrary flat crack in three 
dimensional elasticity. Nishimura et al. (1999) proposed a three-dimensional fast multipole 
boundary integral equation method for solving the crack problems. Particularly, the resulting 
numerical equation is solved using GMRES (generalised minimum residual method) in 
connection with FMM (fast multipole method). Wang (2001) obtained the exact solutions of 
stress intensity factors for the external circular crack problem in a three-dimensional infinite 
elastic body under asymmetric loadings using the boundary integral equation method. The 
two-dimensional singular boundary integral equations of the problem were reduced to a 
system of Abel integral equations by means of Fourier series and hypergeometric functions. 
Similar method also advocated by Theotokoglou (2004) when he solved the three dimensional 
planar cracks subjected to shear load. Whereas, Kiciak et al. (2003) determined the stress 
intensity factors for a variety of geometrical and stress field configurations subjected to 
complex stress fields based on the generalised weight functions. Recently, Aizikovich et al. 
(2010) employed dual integral equations in solving a penny-shaped tensile crack in an 
inhomogeneous elastic medium. It is showed that the approximate solution of the integral 
equation is asymptotically exact for both small and large values of the dimensionless 
geometric parameter of the problem. 

In this present paper, we focus on the finding the numerical result for the antiplane 
shear mode stress intensity factor (mode 3) for a nearly circular crack via the solution of 
hypersingular integral equation and compare our computational result with Gao's (1988). 

2. Problem Formulation 

Consider a three dimensional infinite, homogenous, elastic and isotropic solid body 
containing a flat circular crack, Ω, located on the Cartesian coordinate ሺݔ, ,ݕ  ሻ with origin Oݖ
and Ω lies in the plane ݖ ൌ 0. Let the radious of the crack, Ω be ܽ and  
 

Ω ൌ ሼሺݎ, :ሻߠ 0 ൑ ݎ ൑ ܽ, െߨ ൑ ߠ ൏  . ሽߨ
 

Assume that the stress at infinity and the body force are absent. Now, equal and opposite 
,ݔ௫ሺݍ ,ݔ௬ሺݍ ሻ andݕ  ሻ respectively,   is applied to the crack plane, it is to be assumedݕ
that the ݖ direction are traction free . Hence, in view of the shear load, the entire plane, must 
free from the normal stress, i.e.  

߬௭௭ ൌ ݖ   ,0 ൌ 0. 
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The stress field can be found by considering the above problem subjected to the following 
mixed boundary condition on its surface ݖ ൌ 0:  
 

߬௫௭ ൌ
ߤ

1 െ ߥ
,ݔ௫ሺݍ ሻݕ א Ω

߬௬௭ ൌ
ߤ

1 െ ߥ
,ݔ௬ሺݍ ሻݕ א Ω

,ݔ௫ሺݑ ,ݕ ሻݖ ൌ ,ݔ௬ሺݑ ,ݕ ሻݖ ൌ 0, ሺݔ, ሻݕ א ߲Ω

                                                                     ሺ1ሻ 

  
where  ߬௜௝  is stress tensor,   ߥ  is the Possion’s ratio , ߤ is the shear modulus,  ߲Ω is the 
boundary of Ω and ݍ௫ሺݔ, ,ݔ௬ሺݍ ሻ andݕ  ,directions ݕ and ݔ ሻ are resultant forces inݕ
respectively. The problem satisfies the regularity conditions at infinity,  
 

,ݔ௜ሺݑ ,ݕ ሻݖ ൌ ܱ ൬
1
ܴ

൰ , ߬௜௝ሺݔ, ,ݕ ሻݖ ൌ ܱ ൬
1
ܴ

൰  ,      ݅, ݆ ൌ ,ݔ ,ݕ , ݖ ܴ ՜ ∞ 
 
where R is the distance, 
  

ܴ ൌ ඥሺݔ െ ଴ሻଶݔ ൅ ሺݕ െ ,଴ሻଶݕ ሺݔ଴, ଴ሻݕ א Ω 
 

Rather to solve the mixed boundary value problem (1), it turns out to be more convenient 
to solve them separately, corresponding to concentrated force acting in x and y  directions, i.e. 
 
Problem 1 :  ߬௫௭ ൌ ఓ

ଵିఔ
,ݔ௫ሺݍ ሻ , ߬௬௭ݕ ൌ ߬௭௭ ൌ 0, ݖ ൌ 0  and  

 
Problem 2 :  ߬௬௭ ൌ ఓ

ଵିఔ
,ݔ௬ሺݍ ሻ , ߬௫௭ݕ ൌ ߬௭௭ ൌ 0, ݖ ൌ 0   

 
In this paper, we restrict the problem under consideration to the case where the stress on 

opposite crack surfaces are equal on  x   direction. Hence, the problem of finding the resulting 
force can be formulated as a hypersingular integral eq. (Nik Long et al. 2011)   

 
1

ߨ8
.ܪ ܵ. න

ሺ2 െ ሻݒ ൅ ௝ଶΘ݁ݒ3

ܴଷ ,ݔሺݓ ሻ݀Ω ൌݕ ,଴ݔሺݍ ଴ሻݕ
Ω

                                          ሺ2ሻ 

 
where  ݓሺݔ,  ሻ is the unknown crack opening dispalcement and the angle Θ isݕ
 

ݔ െ ଴ݔ ൌ ݕ  Θ  andݏ݋ܴܿ െ ଴ݕ ൌ  .Θ݊݅ݏܴ
 
The cross on the integral means the hypersingular, and it must be interpreted as a Hadamard 
finite part integral (Hadamard 2003) . Eq. (2) is to be solved subject to  ݓ ൌ 0  on  ߲Ω ൌ 0 .  

 
A polar coordinate ሺݎ, ,ݔሺݍ ,ሻ is chosen so that the loadingߠ  ሻ and crack openingݕ

displacement , ݓሺݔ,   ሻ can be written as complex Fourier seriesݕ
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,ݔሺݍ ሻݕ ൌ ෍ ௡ݍ ቀ
ݎ
ܽ

ቁ
௡ୀஶ

௡ୀିஶ

݁௝௡ఏ 

,ݔሺݓ ሻݕ ൌ ෍ ௡ݓ ቀ
ݎ
ܽ

ቁ
௡ୀ∞

௡ୀି∞

݁௝௡ఏ

 . 

 
Without lost of generality, we consider  ܽ ൌ 1. Krenk (1979) showed that these formulas 

can be simplified if we expand  qn   as a series expansions  
 

ሻݎ௡ሺݍ ൌ |௡|ݎ ෍ ܳ௞
௡
Γ ቀ|݊| ൅ 1

2ቁ Γ ቀ݇ ൅ 3
2ቁ

ሺ|݊| ൅ ݇ሻ! √1 െ ଶݎ

∞

௞ୀ଴

ଶ௞ାଵܥ
|௡|ାଵ

ଶ ቀඥ1 െ   ଶቁݎ

 

ሻݎ௡ሺݓ ൌ |௡|ݎ ෍ ௞ܹ
௡
Γ ቀ|݊| ൅ 1

2ቁ ݇!

Γ ቀ|݊| ൅ ݇ ൅ 3
2ቁ

∞

௞ୀ଴

ଶ௞ାଵܥ
|௡|ାଵ

ଶ ቀඥ1 െ  ଶቁݎ

 
where ݆ െ complex expansion coefficients ܳ௞

௡ are assumed to be known, ௞ܹ
௡ are unknown 

and ܥ௠
ఒ ሺݔሻ is the Gegenbaur polynomial of degree ݉ and index ߣ (Erdélyi et al. 1953) . For a 

constant shear loading,  ݍሺݔ, ሻݕ ൌ െ߬, the solution for a circular crack is obtainable. 

3. Nearly Circular Crack 

Let  Ω  be an arbitrary shaped crack of smooth boundary with respect to origin O, such that  Ω  
is defined as  

Ω ൌ ሼሺݎ, :ሻߠ 0 ൑ ݎ ൏ ሻߠሺߩ ൏ െߨሽ 
 
where the boundary of Ω, ߲Ω is given by ݎ ൌ   ሻ.  Next, let the polar coordinate defined asߠሺߩ
ߞ ൌ |ߞ| ௜ఝ where݁ݏ ൏ 1, hence,  the unit disc ܦ is given by  
 

ܦ ൌ ሼሺݏ, ߮ሻ: 0 ൑ ݏ ൏ 1, െߨ ൑ ߮ ൏  .ሽߨ
 

 By the properties of Reimann Mapping theorem , a circular disc D is mapped conformally 
onto  Ω  using  ݖ ൌ ݂ܽሺߞሻ. The analytic function f is known to exist for any simply connected 
domain  Ω . In addition, we assume  |݂ᇱሺߞሻ|  is non zero and bounded for all  |ߞ| ൏ 1 . 

Consider the conformal mapping  
 

݂ሺߞሻ ൌ ߞ ൅ ܿ݃ሺߞሻ                                                                                                                 ሺ3ሻ 
 

where c is a dimensionless real parameter, g is an analytic function, with ݃ሺߞሻ ൌ  ௠ାଵ, m isߞ
an integer which maps the unit circular disc D in the  ߞ -plane into an arbitrary shape domain  
Ω  in the z-plane,  

Ω ൌ ሼሺݎ, :ሻߠ 0 ൑ ݎ ൏ ሻߠሺߩ ൏ െߨሽ 
 
where ߲Ω is given by ݎ ൌ ሻ. This domain has a smooth, regular boundary for  0ߠሺߩ ൑
ሺ݉ ൅ 1ሻ|ܿ| ՜ 1. As  ሺ݉ ൅ 1ሻ|ܿ| ՜ 1,   one or more cusps develop. See Figs. 1 and 2 for 

݉ ൌ 1  and  ݉ ൌ 2 , respectively, with various c.  F
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Figure 1: The Domain Ω For ݉ ൌ 1 With Different 

Choices of c 

 
Figure 2: The Domain Ω For ݉ ൌ 2 With Different 

Choices of c 
 

 
With the mapping (3), eq. (2) can be written as  
 

2 െ ݒ ൅ ଶ௝Θ݁ݒ3

ߨ8
.ܪ ܵ න

ܹሺߦ, ሻߟ
ܵଷ ߟ݀ߦ݀

஽
൅

2 െ ݒ
ߨ8

.ܥ ܲ න ܹሺߦ, ,ߞሺଵሻሺܭሻߟ ߟ݀ߦ଴ሻ݀ߞ
஽

൅
ݒ3
ߨ8

න ܹሺߦ, ,ߞሺଶሻሺܭሻߟ ߟ݀ߦ଴ሻ݀ߞ
஽

ൌ ܳሺߦ଴, ଴ሻߟ
       ሺ4ሻ 

 
where the ܭሺଵሻሺߞ, ,ߞሺଶሻሺܭ  ଴ሻ andߞ   ଴ሻ areߞ
 

,ߞሺଵሻሺܭ ଴ሻߞ ൌ
ห݂ ′ሺߞሻหିଷ

ଶห݂ ′ሺߞ଴ሻหିଷ
ଶ

|݂ሺߞሻ െ ݂ሺߞ଴ሻ|ଷ ݁௝ሺఋିఋబሻ െ
1

ߞ| െ  ଴|ଷߞ

 

,ߞሺଶሻሺܭ ଴ሻߞ ൌ
ห݂ ′ሺߞሻหିଷ

ଶห݂ ′ሺߞ଴ሻหିଷ
ଶ

|݂ሺߞሻ െ ݂ሺߞ଴ሻ|ଷ ݁௝ሺଶΘିఋିఋబሻ െ
1

ߞ| െ ଴|ଷߞ ݁ଶ௝Φ. 

This hypersingular integral equation over a circular disc D is to be solved subject to  ܹ ൌ 0 
on ݏ ൌ 1. For small S, ܭሺଵሻ is Cauchy-type singular kernel while ܭሺଶሻ is weakly singular with 
ܱሺܵିଵሻ (Nik Long et al. 2011).  

Denote ܹ as 
 

ܹሺߦ, ሻߟ ൌ ෍ ௞ܹ
௡ܣ௞

௡ሺݏ, ߮ሻ                                                                                                  ሺ5ሻ
௡,௞

 

 
where ௞ܹ

௡ are unknown coeefcients and ܣ௞
௡ሺݏ, ߮ሻ is defined by 

 

௞ܣ
௡ሺݏ, ߮ሻ ൌ ଶ௞ାଵܥ|௡|ݏ

|௡|ାଵ
ଶ ቀ ඥ1 െ ଶቁݏ ݁௝௡ఝ .                                                                              ሺ6ሻ 
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Introduce 
 

௛ܮ
௠ሺݏ, ߮ሻ ൌ ଶ௛ାଵܥ|௠|ݏ

|௠|ାଵ
ଶ ቀ ඥ1 െ ଶቁݏ cosሺ݉߮ሻ.                                                                    ሺ7ሻ 

 
The relationship of these two functions, ܣ௞

௡ሺݏ, ߮ሻ and ܮ௛
௠ሺݏ, ߮ሻ can be expressed as 

 

          න ௞ܻ
௡ሺߞሻܮ௛

௠ሺߞሻ߮݀ݏ݀ݏ
√1 െ ଶΩݏ

ൌ ௞ܤ
௡ߜ௛௞ߜ௡௠                                                                       ሺ8ሻ 

 
where ߜ௜௝ is the Kroneker delta and  
 

௞ܤ
௡ ൌ

௡ߪ

2
݄ଶ௞ାଵ

௡ାଵ
ଶ  , 

 

݄ଶ௞ାଵ
௡ାଵ

ଶ ൌ
ߨ

2ଶ௡
Γሺ2݇ ൅ 2݊ ൅ 2ሻ

ቀ2݇ ൅ ݊ ൅ 3
2ቁ ሺ2݇ ൅ 1ሻ! ቂΓ ቀ݊ ൅ 1

2ቁቃ
ଶ ,  

 

௡ߪ ൌ ቄ2ߨ ݊ ൌ 0
ߨ ݊ ് 0. 

 
Substitute Eq. (5) into (4) and making use of Krenk's formula (1979) yields  
 

෍ ௞ܨ
௡ሺݏ଴, ߮଴ሻ

௡,௞
௞ܹ
௡ ൌ ܳ൫ߦ଴ሺݏ଴, ߮଴ሻ, ,଴ݏ଴ሺߟ ߮଴ሻ൯                                                              ሺ9ሻ 

 
where  
 

௞ܨ
௡ሺݏ଴, ߮଴ሻ ൌ െܧ௞

௡ ൫2 െ ߥ ൅ ௞ܣଶ௝஀൯݁ߥ3
௡ሺݏ଴, ߮଴ሻ

2ඥ1 െ ଴ݏ
ଶ

൅
2 െ ߥ

ߨ8
න ௞ܣ

௡ሺݏ, ߮ሻܭሺଵሻሺߞ, ߟ݀ߦ଴ሻ݀ߞ
஽

൅
ߥ3
ߨ8

න ௞ܣ
௡ሺݏ, ߮ሻܭሺଶሻሺߞ, ߟ݀ߦ଴ሻ݀ߞ

஽
; 0 ൏ ݏ ൑ 1, 0 ൑ ߮ ൏ 1

 

 
 

 and  ∑ ൌ௡,௞ ∑ ∑  .ேమ
௞ୀ଴

ேభ
௡ୀିேభ

 
 
Apply the Galerkin method in evaluating the Eq. (9) leads to 
 

                                ෍ ෙܹ௞
௡ ቆെ

2 െ ߥ ൅ ଶ௞Θ݁ߥ3

2
|௡||௠|ߜ௛௞ߜ ൅ ܵ௛௞

௠௡ቇ
௡,௞

ൌ ܳ௛
௠ ;

െ ଵܰ ൑ ݉ ൑ ଵܰ ; 0 ൑ ݇ ൑ ଶܰ  
                      ሺ10ሻ 
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where  
 

ܵ௛௞
௠௡ ൌ

2 െ ߥ
௞ܧඥߨ8

௠ܤ௞
௠ඥܧ௛

௡ܤ௛
௡ ௛ܶ௞

௠௡, ௛ܶ௞
௠௡ ൌ න ௛ܮ

௠ሺߞሻ න ௞ܻ
௡ሺߞሻܪሺߞ, ,଴ߞ݀ߞ଴ሻ݀ߞ

஽஽
 

ܳ௞
௡ ൌ

1
ඥܧ௞

௡ܤ௞
௡ න ௞ܻ

௡ሺߞ଴ሻܳሺߞ଴ሻ݀ߞ଴
஽

, 
௞ܹ
௡ ൌ െ ෙܹ௞

௡ ଶ௞ାଵܩ
|௡|ାଵ/ଶඨ

௞ܧ
௡

௞ܤ
௡ 

 
and  

,ߞሺܪ ଴ሻߞ ൌ ሺ2 െ ,ߞሺଵሻሺܭሻߥ ଴ሻߞ ൅ ,ߞሺଶሻሺܭߥ3   .଴ሻߞ
 
In (10) , we have used the following notation : 

 
଴ߞ   ൌ ,଴ݏ଴ሺߞ ߮଴ሻ,  ܳሺߞ଴ሻ ൌ ܳሺݏ଴ܿ߮ݏ݋଴, ଴ݏ sin ߮଴ሻ and  ݀ߞ଴ ൌ  .߮݀ݏ଴݀ݏ

 
In evaluating the quadruple integral in Eq. (10),  we have used the Gaussian quadrature and 
trapezoidal formulas for the radial and angular directions, with the appropriate choice of 
collocation points ሺs,φሻ and ሺs଴,φ଴ሻ , respectively.  

4. Antiplane Stress Intensity Factor 

The important parameter in the crack problem is to determine the stress intensity factor. The 
antiplane shear mode stress intensity factor,  ܭଷሺ߮ሻ is defined as (Gao & Rice 1986, 1987) 
and (Gao 1988) 

ଷሺ߮ሻܭ                 ൌ lim
௥՜௔

ଷඨܯ ߨ2
ܽ െ ݎ

,ݔሺݓ  ሻ                                                                      ሺ11ሻݕ

 
where ܯଷ are constants. Let ܽሺ߮ሻ ൌ ห݂൫݁௜ఝ൯ห, ݎ ൌ ห݂൫݁ݏ௜ఝ൯ห, and as s close to 1, we have 
 

                            ห݂൫݁௜ఝ൯ െ ݂൫݁ݏ௜ఝ൯ห ൌ ሺ1 െ sሻห݂,൫݁௜ఝ൯ห.                                            ሺ12ሻ 
 
Substitute Eq. (5) and (12) into (13) gives 
 

ଷሺ߮ሻܭ ൌ ଷܯ ൝ห݂,൫݁௜ఝ൯หିଵ ෍
ෙܹ௞

௡

ඥܧ௞
௡ܤ௞

௡
௡,௞

௞ܻ
௡ሺ߮ሻൡ                                                            ሺ13ሻ 

 
where  
 

௞ܻ
௡ሺ߮ሻ ൌ ଶ௞ାଵܦ

|௡|ାభ
మሺ0ሻ cosሺ݊߮ሻ, ܯଷ ൌ ଵିఔ

଼గ
sinሺ߮ሻ and  

 

ଶ௞ାଵܥ 
|௡|ାభ

మ൫√1 െ ଶ൯ݏ ൌ √1 െ ଶ௞ାଵܦଶݏ
|௡|ାభ

మ൫√1 െ    .ଶ൯ݏ
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5. Result and Discussion 

Tables 1 and 2 show that our numerical scheme converges rapidly with a small value of  
ܰ ൌ ଵܰ ൌ ଶܰ .  
 

Table 1:  Numerical convergence antiplane mode stress intensity factor for ݂ሺߞሻ ൌ ߞ ൅  ଶߞ0.1

ଷܭ ଷሺ0.00ሻܭ ܰ ቀ
ߨ
4ቁ ܭଷ ቀ

ߨ
2ቁ ܭଷ ൬

ߨ3
4 ൰ ܭଷሺߨሻ 

0 0.0000 -6.330E-04 -9.5075E-04 -7.2780E-04 -1.3145E-19 
1 0.0000 -0.7174 -0.9211 -0.5854 -9.6785E-17 
2 0.0000 -0.7174 -0.9199 -0.5854 -9.6785E-17 
3 0.0000 -0.7174 -0.9199 -0.5854 -9.6785E-17 
4 0.0000  -0.9199 -0.5854 -9.6785E-17 
5    -0.5854 -9.6785E-17 
6    -0.5854  

 

Table 2:  Numerical convergence antiplane mode stress intensity factor for ݂ሺߞሻ ൌ ߞ ൅  ଶߞ0.45

ଷܭ ଷሺ0.00ሻܭ ܰ ቀ
ߨ
4ቁ ܭଷ ቀ

ߨ
2ቁ ܭଷ ൬

ߨ3
4 ൰ ܭଷሺߨሻ 

0 0.0000 -3.6543E-04 -5.9039E-04 -5.6560E-04   -2.6519E-19 
1 0.0000 0.0000 -4.3808E-03 -7.3368E-03   -3.4300E-18 
2 0.0000    -0.9204 -0.8734 -0.2892   -3.4803E-17 
3 0.0000    -0.9179 -0.8734 -0.2930     -3.2324E-17 
4 0.0000  -0.9102 -0.8715 -0.2948     -3.1443E-17 
5  -0.9189 -0.8715 -0.2954 -3.0878E-17 
6 
7 
8 
9 
10 
11 
12 
13 
14 

 -0.9188 
-0.9188 
-0.9188 

-0.8719 
-0.8718 
-0.8718 
-0.8718 

-0.2954 
-0.2952 
-0.2952 
-0.2952 
-0.2952 
-0.2952 

-3.0785E-17 
-3.0708E-17 
-3.0693E-17 
-3.0685E-17 
-3.0681E-17 
-3.0679E-17 
-3.0679E-17 
-3.0679E-17 
-3.0679E-17 

 

Next, we compare our result for the determination of the antiplane shear mode stress 
intensity factor, (Eq. (13)) with the asymptotic solutions obtained by Gao (1988) These are 
shown in Figs. 3 and 4 for c=0.1 at  ݉ ൌ 1  and  ݉ ൌ 2 , respectively. Whereas Fig. 5 
displayed the comparison result for c=-0.2 at  ݉ ൌ 1 . Our numerical results seems to agree 
with the asymptotic solution obtained by Gao (1988).  
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Figure 3: The stress intensity factor ܭଷሺ߮ሻ as function ݂ሺߞሻ ൌ ߞ ൅ ܿ ଶ whenߞܿ ൌ 0.1 

 
 

Figure 4: The stress intensity factor ܭଷሺ߮ሻ as function ݂ሺߞሻ ൌ ߞ ൅ ܿ ଷ whenߞܿ ൌ 0.1 
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Figure 4: The stress intensity factor ܭଷሺ߮ሻ as function ݂ሺߞሻ ൌ ߞ ൅ ܿ ଶ whenߞܿ ൌ െ0.2 

6. Conclusion  

In the present paper, the nearly circular crack is mapped conformally into a unit circle. 
Through this mapping, the equation is transformed into hypersingular integral equation over a 
circular crack, which enable us to use the formula obtained by Krenk (1979).  By choosing the 
appropriate collocation points, this equation is reduced into a system of linear equations and 
solved for the unknown coefficients, which are later used in finding the antiplane shear mode 
stress intensity factor. Through a careful analysis and comparison between the present 
solutions and Gao (1988), it was shown that our numerical results agree with the existing 
asymptotic solution. 

Acknowledgement 

This project is supported by Ministry of Higher Education Malaysia for the Fundamental 
Research Grant Scheme, project No: 01-04-10-897FR and NSF scholarship. 

References  

Astiz M. 1986. An incompatible singular elastic element for two- and three-dimensional crack problems. 
International Journal of Fracture 31: 105-124. 

Borodachev N.M. 1993. Solution of integral equation for almost circular cracks. Strength of Materials 25 :275-
280. 

Cotterell B. & Rice J.R. 1980. Slightly curved or kinked cracks. International Journal of Fracture 16: 155-169. 
Cruse T.A. 1969. Numerical solutions in three dimensional elastostatics. International Journal of Solids and 

Structures 5: 1259-1276. 
Cruse T.A. 1973. Application of the boundary-integral equation method to three dimensional stress analysis. 

Computers and Structures  5: 509-527. 
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