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ABSTRACT

This paper deals with a slightly perturbed circular crack, Q in the three dimensional plane. The
problem of finding the resulting shear forces can be formulated as a hypersingular integral
equation over a considered domain. Conformal mapping is used to transform the integral
equation into a similar equation over a circular region, D. By making a suitable representation
of hypersingular integral equation, the problem is reduced to solve a system of linear
equations. The system is solved numerically for the unknown coefficients, which will later be
used in determining the antiplane shear mode stress intensity factor. Comparison of the
numerical solutions with the existing asymptotic solutions show a good agreement.
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ABSTRAK

Dalam makalah ini dibincangkan retakan bulat sedikit terusik, €, dalam satah tiga dimensi.
Masalah mencari tegasan ricih boleh diformulasikan sebagai persamaan kamiran hipersingular
ke atas domain yang dipertimbangkan. Pemetaan menyebentuk dijanakan untuk
mentransformasikan persamaan kamiran kepada suatu persamaan yang serupa ke atas kawasan
bulat, D. Dengan membuat perwakilan persamaan kamiran hipersingular yang sesuai, masalah
tersebut diturunkan kepada menyelesaikan sistem persamaan linear. Sistem ini diselesaikan
secara berangka untuk menentukan pekali anu yang akan digunakan untuk menentukan faktor
keamatan regangan bagi mod ricih anti-satah. Perbandingan keputusan berangka dengan
penyelesaian asimptot yang sedia ada menunjukkan kesamaan.

Kata kunci: persamaan kamiran hipersingular; pemetaan menyebentuk; faktor keamatan
regangan

1. Introduction

Fracture mechanics is an important tool for the analysis of cracked bodies and is introduced in
order to analyse the relationship among stresses, cracks and fracture toughness which used in
a wide range of industries. Different approaches have been used by many researches in
finding the stress intensity factor along the crack edges and crack tips (Sneddon 1946;
Theocaris & loakimides 1970; Weaver 1977; Tan 1983; Linkov & Mogilevskaya 1994; Zhu
et al. 2001; Qin ef al. 2008; Nik Long & Eshkuvatov 2009; Nik Long et al. 2011).

Potential method was adopted by Cruse (1969) in finding the solution of the unknown
surface tractions and displacements in three dimensional electrostatic. Further, He (1973)
applied the numerical procedure based on the boundary integral equation method in solving a
penny shaped crack problem. The Somigliana formula is used by Guidera and Lardner (1975)
to reduce an arbitrary elastic crack problem to a system of three integral equations for the
components of displacement discontinuity. Moreover, the integral equations are solved
explicitly for stresses and stress intensity factor for a penny shaped crack located in an infinite
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isotropic medium with the crack faces are subjected to arbitrary tractions. Mastrojannis et al.
(1979) formulated the planar crack problem to the solution of a system of two dimensional
Fredholm integral equation and solved numerically for determining the normal mode stress
intensity factor. Cotterell and Rice (1980) used the perturbation method accurate to the first
order in the derivation of stress intensity factors and his work can be extended to find the
energy release rate at the tips of two dimensional kinked or slightly curved cracks. Similar
approach can also be found in Rice (1985), Gao and Rice (1987) and Gao (1988). Another
approach in solving a nearly circular crack can be found in Borodachev (1993). The almost
circular cracks is solved by reducing the first kind Fredholm two dimensional integral
equation of spacial problems of the theory of crack using the Fr’echet derivative of some
nonlinear operator and variational formula. In particular, a solution of almost circular crack
subjected to normal loading based on the inversion formula is obtained. Astiz (1986) derived
a singular triangular element to compute the stress intensity factor along the crack border. Qin
and Tang (1993) adopted the finite-part integral method in the derivation of a set of
hypersingular integral equations and obtained the numerical results for the crack opening
displacement and tensile mode stress intensity factor for the arbitrary flat crack in three
dimensional elasticity. Nishimura et al. (1999) proposed a three-dimensional fast multipole
boundary integral equation method for solving the crack problems. Particularly, the resulting
numerical equation is solved using GMRES (generalised minimum residual method) in
connection with FMM (fast multipole method). Wang (2001) obtained the exact solutions of
stress intensity factors for the external circular crack problem in a three-dimensional infinite
elastic body under asymmetric loadings using the boundary integral equation method. The
two-dimensional singular boundary integral equations of the problem were reduced to a
system of Abel integral equations by means of Fourier series and hypergeometric functions.
Similar method also advocated by Theotokoglou (2004) when he solved the three dimensional
planar cracks subjected to shear load. Whereas, Kiciak et al. (2003) determined the stress
intensity factors for a variety of geometrical and stress field configurations subjected to
complex stress fields based on the generalised weight functions. Recently, Aizikovich et al.
(2010) employed dual integral equations in solving a penny-shaped tensile crack in an
inhomogeneous elastic medium. It is showed that the approximate solution of the integral
equation is asymptotically exact for both small and large values of the dimensionless
geometric parameter of the problem.

In this present paper, we focus on the finding the numerical result for the antiplane
shear mode stress intensity factor (mode 3) for a nearly circular crack via the solution of
hypersingular integral equation and compare our computational result with Gao's (1988).

2. Problem Formulation

Consider a three dimensional infinite, homogenous, elastic and isotropic solid body
containing a flat circular crack, (), located on the Cartesian coordinate (x,y, z) with origin O
and Q lies in the plane z = 0. Let the radious of the crack, (1 be a and

Q={(r0)0<r<a-n<6<mn}.

Assume that the stress at infinity and the body force are absent. Now, equal and opposite
dx(x,y) and qy(x,y) respectively, is applied to the crack plane, it is to be assumed

that the z direction are traction free . Hence, in view of the shear load, the entire plane, must
free from the normal stress, i.e.
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The stress field can be found by considering the above problem subjected to the following
mixed boundary condition on its surface z = 0:

u
T =7, (xy) €Q
u
Ty, = m%(x, y) EQ )
uy(x,y,2) = uy(x,y,2) = 0,(x,y) € 0Q
where Tt; j is stress tensor, Vv is the Possion’s ratio , u is the shear modulus, 9Q is the

boundary of Q and q,(x,y) and q,(x,y) are resultant forces in x and y directions,
respectively. The problem satisfies the regularity conditions at infinity,

1 1 o
ui(x,y,Z)=0(§), Tij(x,y,2)=0(ﬁ>, Lj=x,y,Z, R -

where R is the distance,

R = \/(x —x0)%+ (y —¥0)?, (x0,¥0) €Q

Rather to solve the mixed boundary value problem (1), it turns out to be more convenient
to solve them separately, corresponding to concentrated force acting in x and y directions, i.e.

Problem 1 : t,, = ﬁqx(x, Y),Ty; =Tz =0,z=0 and
Problem2: 1,, = ﬁqy(x, V), Ty =Tz =0,2=0
In this paper, we restrict the problem under consideration to the case where the stress on

opposite crack surfaces are equal on x direction. Hence, the problem of finding the resulting
force can be formulated as a hypersingular integral eq. (Nik Long et al. 2011)

1 2 - 3vel2®
fQ (2= v) 4 3vel A0 = qCxorvo) @

—H.S.
8w S R3

where w(x,y) is the unknown crack opening dispalcement and the angle @ is
X —xy = Rcos® and y — y, = Rsin®.

The cross on the integral means the hypersingular, and it must be interpreted as a Hadamard
finite part integral (Hadamard 2003) . Eq. (2) is to be solved subjectto w =0 on dQ =0.

A polar coordinate (r,8) is chosen so that the loading, q(x,y) and crack opening
displacement , w(x, y) can be written as complex Fourier series
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q(x,y) = Z e”‘e

s
w(x,y) z 61"9

Without lost of generality, we consider a = 1. Krenk (1979) showed that these formulas
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can be simplified if we expand ¢ as a series expansions

= 1 3
q,(r) = rinl z or r (Inl + E) r(k + 7) Czlzlj (m)

£ (nl + VI — 12
|Tl| + |TL|+1
w, (r)—r"”ZW” )3 CZk+12( 1—r2)
r(Inl+k+3)

where j — complex expansion coefficients Q) are assumed to be known, W} are unknown
and C/ (x) is the Gegenbaur polynomial of degree m and index A (Erdélyi et al. 1953) . For a
constant shear loading, q(x,y) = —t, the solution for a circular crack is obtainable.

3. Nearly Circular Crack

Let Q be an arbitrary shaped crack of smooth boundary with respect to origin O, such that ()
is defined as
Q={(r0):0<r<p) <-r}

where the boundary of Q, 0Q is given by r = p(6). Next, let the polar coordinate defined as
{ = se'? where |{| < 1, hence, the unit disc D is given by

D={(s,¢):0<s<1,-nm<¢<m}

By the properties of Reimann Mapping theorem , a circular disc D is mapped conformally
onto Q using z = af({). The analytic function fis known to exist for any simply connected
domain Q. In addition, we assume |f’({)| is non zero and bounded for all |{| < 1.

Consider the conformal mapping

f(@) =¢+cg(O) 3)

where c is a dimensionless real parameter, g is an analytic function, with g(¢) = {™*1, m is
an integer which maps the unit circular disc D in the { -plane into an arbitrary shape domain
Q in the z-plane,

Q={(r0):0<r<p) <-n}

where 0Q is given by r = p(6). This domain has a smooth, regular boundary for 0 <
(m+D]c] > 1. As (m+1)|c| » 1, one or more cusps develop. See Figs. 1 and 2 for

m =1 and m = 2, respectively, with various c.
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Figure 1: The Domain Q0 For m = 1 With Different Figure 2: The Domain 0 For m = 2 With Different
Choices of ¢ Choices of ¢

With the mapping (3), eq. (2) can be written as

2 — v + 3ve?® W(,n) 2—v
————HS ——dédn+——C.P| W KW déd
8r ]D S3 §dn + 81 ]D (&, MK (g, {p)dédn

4
+3—”] W(E KD, Go)dedn = Q(Eormo) v
877,' b 'TI S50 T]_ O'UO

where the KM (¢, ) and K@) ({,,) are

3 3
FOIZ G2 jismsy 1
Q= @I’ T =3P

K(l) ({: (0) =

2jd

3 3
— |f’(()| 2|f ({0)| 2 j(20-6-64) _ 1

(2) -
K = e = Faor © e

This hypersingular integral equation over a circular disc D is to be solved subject to W =0
on s = 1. For small S, KM is Cauchy-type singular kernel while K ® is weakly singular with
0(S™1) (Nik Long et al. 2011).

Denote W as

W(ED = ) WAL, 9) (5)
nk
where W)} are unknown coeefcients and A% (s, @) is defined by

1
1002 = P (1) o ©
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Introduce

1
L7 (s, @) = s"”'Czlr;ll:E ( v1-— 52) cos(mg). @)

The relationship of these two functions, A% (s, ) and L} (s, ¢) can be expressed as

J’ Y/?(()LT(OSde(p = Bl 6nkOnm @
Q

V1 -—s2
where & is the Kroneker delta and

1

0. n+s
B = fnhzkﬁ ’
hn+% _m I'(2k + 2n + 2)
2k+1 2

"2k +n+ ) @ror D1 (n+ D))

o ={2n n=20
n T n+0

Substitute Eq. (5) into (4) and making use of Krenk's formula (1979) yields

Z F¢ (50, o) Wi = Q(fo(so' ®0), M0 (S0, (Po)) 9
nk

where

N (2 — v+ 3ve¥®) Al (sy, ¢o) N 2—v

(S0, ®0) k 5 1_53 81 L (s, @) (¢, ¢o)dédn

3v
+§J n(s, K@ ((,()dédn;0<s<1,0< @ <1
D

N N;
and Zn,k :Zn;—Nl kio .

Apply the Galerkin method in evaluating the Eq. (9) leads to

o 2 — v + 3ve?k®
> (- 2 St + ST ) = 01
nk

(10)
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where
2—v
syn = T, T = [ 1 [ wOHE s,
hk Sn\WW hk hk b h b k 0 0
1
n= Yn d y n n ~in Ei
Qi \/W K (€0)Q(Go)ddo WE = —Wp G2 B_ZL
and

H((' (0) = (2 - V)K(l) ((! CO) + 3VK(2) ((' ZO)

In (10) , we have used the following notation :

$o = Go(S0,®0), Qo) = Q(S0c0s®y, Sosin@y) and d{y = sedsde.

In evaluating the quadruple integral in Eq. (10), we have used the Gaussian quadrature and
trapezoidal formulas for the radial and angular directions, with the appropriate choice of
collocation points (s, ¢) and (So, ¢,) , respectively.

4. Antiplane Stress Intensity Factor

The important parameter in the crack problem is to determine the stress intensity factor. The
antiplane shear mode stress intensity factor, K3(¢) is defined as (Gao & Rice 1986, 1987)
and (Gao 1988)

2T
Ks(#) = lim M; /a —w(x,) (11)

where M5 are constants. Let a(@) = |f(ei‘P)|, r= |f(sei"’)|, and as s close to 1, we have

[F(e?) = f(se™)| = A = 9| f(e™)]. (12)

Substitute Eq. (5) and (12) into (13) gives

o e
K(<p)=M{f' ei®)| ™ k Y"(fp)} (13)
; ()] Zﬂ

where

1
|n|+5

Y (@) = D,, . 2(0) cos(ng), M3 = :—ﬂvsin(go) and

(MM VTTS7) = IS (VT =),

2k+1
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5. Result and Discussion

Tables 1 and 2 show that our numerical scheme converges rapidly with a small value of
N = Nl = NZ .

Table 1: Numerical convergence antiplane mode stress intensity factor for f({) = { + 0.1{2

N K3(0.00 T T 3n K3(m

S000) e, (0 k(D) () A
0 0.0000 -6.330E-04 -9.5075E-04 -7.2780E-04 -1.3145E-19
1 0.0000 -0.7174 -0.9211 -0.5854 -9.6785E-17
2 0.0000 -0.7174 -0.9199 -0.5854 -9.6785E-17
3 0.0000 -0.7174 -0.9199 -0.5854 -9.6785E-17
4 0.0000 -0.9199 -0.5854 -9.6785E-17
5 -0.5854 -9.6785E-17
6 -0.5854

Table 2: Numerical convergence antiplane mode stress intensity factor for f({) = { + 0.45¢>

N K5(0.00 T T 3 K;(m
3(0.00) K, (Z) K, (E) K, (T) 3(1)

0 0.0000 -3.6543E-04 -5.9039E-04 -5.6560E-04 -2.6519E-19
1 0.0000 0.0000 -4.3808E-03 -7.3368E-03 -3.4300E-18
2 0.0000 -0.9204 -0.8734 -0.2892 -3.4803E-17
3 0.0000 -0.9179 -0.8734 -0.2930 -3.2324E-17
4 0.0000 -0.9102 -0.8715 -0.2948 -3.1443E-17
5 -0.9189 -0.8715 -0.2954 -3.0878E-17
6 -0.9188 -0.8719 -0.2954 -3.0785E-17
7 -0.9188 -0.8718 -0.2952 -3.0708E-17
8 -0.9188 -0.8718 -0.2952 -3.0693E-17
9 -0.8718 -0.2952 -3.0685E-17
10 -0.2952 -3.0681E-17
11 -0.2952 -3.0679E-17
12 -3.0679E-17
13 -3.0679E-17
14 -3.0679E-17

Next, we compare our result for the determination of the antiplane shear mode stress
intensity factor, (Eq. (13)) with the asymptotic solutions obtained by Gao (1988) These are
shown in Figs. 3 and 4 for ¢=0.1 at m=1 and m = 2 , respectively. Whereas Fig. 5
displayed the comparison result for ¢=-0.2 at m = 1 . Our numerical results seems to agree
with the asymptotic solution obtained by Gao (1988).
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Figure 3: The stress intensity factor K3 (¢) as function f({) = { + c¢{? when ¢ = 0.1
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Figure 4: The stress intensity factor K5 (¢) as function f({) = { + ¢ when ¢ = 0.1
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Figure 4: The stress intensity factor K5(¢) as function f({) = ¢ + ¢{? when ¢ = —0.2

6. Conclusion

In the present paper, the nearly circular crack is mapped conformally into a unit circle.
Through this mapping, the equation is transformed into hypersingular integral equation over a
circular crack, which enable us to use the formula obtained by Krenk (1979). By choosing the
appropriate collocation points, this equation is reduced into a system of linear equations and
solved for the unknown coefficients, which are later used in finding the antiplane shear mode
stress intensity factor. Through a careful analysis and comparison between the present
solutions and Gao (1988), it was shown that our numerical results agree with the existing
asymptotic solution.
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