ABSTRACT

In this paper, the steady mixed convection boundary layer flow near the lower stagnation point of a horizontal circular cylinder with a constant surface temperature embedded in a porous medium saturated by a nanofluid containing gyrotactic microorganisms in a stream flowing vertically upwards for both cases of a heated and cooled cylinder, is studied numerically. The resulting system of nonlinear ordinary differential equations is solved numerically using an implicit finite-difference scheme known as the Keller box method. By considering the governing parameters, namely the mixed convection parameter λ, the bioconvection Lewis number L_b, the traditional Lewis number L_e, the bioconvection Péclet number P_b, the buoyancy ratio N_r, the bioconvection Rayleigh number R_b, the Brownian motion N_b and the thermophoresis N_t, the numerical results are obtained and discussed for the skin friction coefficient, the local Nusselt number, the local Sherwood number, the local density number of the motile microorganisms as well as the velocity, temperature, nanoparticles volume fraction and motile microorganisms density profiles.

Keywords: bioconvection; horizontal circular cylinder; lower stagnation point; mixed convection; nanofluid; porous medium

REFERENCES

1 Fakulti Industri Asas Tani
Universiti Malaysia Kelantan
Kampus Jeli
17600 Jeli
Kelantan DN, MALAYSIA
Mel-e: leonytham@gmail.com

2 Pusat Pengajian Sains Matematik
Fakulti Sains dan Teknologi
Universiti Kebangsaan Malaysia
43600 UKM Bangi
Selangor DE, MALAYSIA
Mel-e: rmn@ukm.my

3 Faculty of Mathematics
University of Cluj
R-3400 Cluj, CP-253
ROMANIA
E-mail: popm.ioan@yahoo.co.uk

* Corresponding author