MIXED CONVECTION FLOW AT THE LOWER STAGNATION POINT OF A CIRCULAR CYLINDER EMBEDDED IN A POROUS MEDIUM FILLED BY A NANOFUID CONTAINING GYROTACIC MICROORGANISMS

(Aliran Olakan Campuran pada Titik Genangan Bawah Silinder Bulat yang Dibenam dalam Medium Berliang dengan Nanobendalir yang Mengandungi Mikroorganisma Gyrotactic)

LEONY THAM YEW SENG, ROSLINDA NAZAR & IOAN POP

ABSTRACT

In this paper, the steady mixed convection boundary layer flow near the lower stagnation point of a horizontal circular cylinder with a constant surface temperature embedded in a porous medium saturated by a nanofuid containing gyrotactic microorganisms in a stream flowing vertically upwards for both cases of a heated and cooled cylinder, is studied numerically. The resulting system of nonlinear ordinary differential equations is solved numerically using an implicit finite-difference scheme known as the Keller box method. By considering the governing parameters, namely the mixed convection parameter λ, the bioconvection Lewis number Lb, the traditional Lewis number Le, the bioconvection Péclet number Pb, the buoyancy ratio Nr, the bioconvection Rayleigh number Rb, the Brownian motion Nb and the thermophoresis Nt, the numerical results are obtained and discussed for the skin friction coefficient, the local Nusselt number, the local Sherwood number, the local density number of the motile microorganisms as well as the velocity, temperature, nanoparticles volume fraction and motile microorganisms density profiles.

Keywords: bioconvection; horizontal circular cylinder; lower stagnation point; mixed convection; nanofuid; porous medium

ABSTRAK

Dalam makalah ini, aliran lapisan sempadan olakan campuran mantap pada titik genangan bawah silinder bulat mengufuk dengan suhu permukaan malar yang dibenam dalam medium berliang yang dipenuhi nanobendalir dan mengandungi mikroorganisma gyrotactic, dalam aliran yang mengalir menegak ke atas bagi kedua-dua kes silinder yang dipanaskan dan disejukkan, telah dikaji secara berangka. Sistem persamaan pembezaan biasa tak linear yang terhasil diselesaikan secara berangka menggunakan skema beza terhingga tersirat yang dikenali sebagai kaedah kotak Keller. Dengan mempertimbangkan beberapa parameter menakluk, iaitu parameter olakan campuran λ, nombor Lewis bio-olakan Lb, nombor Lewis tradisional Le, nombor Péclet bio-olakan Pb, nisbah keapungan Nr, nombor Rayleigh bio-olakan Rb, gerakan Brownian Nb dan termoforesis Nt, keputusan berangka diperoleh dan dibincangkan bagi pekali geserul kulit, nombor Nusselt setempat, nombor Sherwood setempat, nombor ketumpatan setempat bagi mikroorganisma motil serta profil-profil halaju, suhu, pecahan isi padu nanozarah dan ketumpatan mikroorganisma motil.

Kata kunci: bio-olakan; silinder bulat mengufuk; titik genangan bawah; olakan campuran; nanobendalir; medium berliang

1. Introduction

The combined convective heat transfer in fluid saturated porous media is important in the area related to fibrous insulation, food processing and storage, thermal insulation of buildings, geophysical systems, electro chemistry and nuclear reactors. A comprehensive concepts and

The term nanofluid has been introduced by Choi (1995), to define the dilution of nanometer-sized particles, which is smaller than 100nm, in a base fluid (Das et al. 2007), such as water, ethylene glycol and oil. These nanometer-sized particles allow the nanoparticles to flow easily through the microchannels (Khanafer et al. 2003), and they possess a higher thermal conductivity property, making the nanofluid to be an impressive enhancement of thermal conductivity and heat transfer compared to the base fluid only (Sadik and Pramuanjaroenkij 2009). As such, the nanofluids are potentially contributing in microfluidic devices (Kuznetsov 2010). Many solid and comprehensive references on nanofluids are available, such as the book by Das et al. (2007), review papers by Buongiorno (2006), Duangthonguak and Wongwises (2007), Wang and Mujumdar (2008), Kakac and Pramuanjaroenkij (2009), and Nazar et al. (2011). On the other hand, Tsai et al. (2009) found that mixing nanoparticles in the base fluid is an issue, and that nanofluid itself, without a stabiliser, nanoparticles in nanofluid are unstable, and have the tendency to aggregate and causing the clogging of microchannels and decreasing the thermal conductivity of nanofluid. For the instability issue in nanofluid, by introducing the upswimming microorganisms that are heavier than water (base fluid), these microorganisms, such as gyrotactic microorganisms like algae, which tend to concentrate in the upper portion of the fluid layer thus causing a top-heavy density stratification that often becomes unstable (Pedley et al. 1988; Ghasemi & Aminiassadati 2010), and causing a bioconvection to occur in this nanofluid flow, and eventually increasing the stability of nanoparticles to suspend, which could avoid nanoparticles from agglomerating and aggregating (Yu 2012).

Bioconvection is a phenomenon that occurs when convection instability is induced by upswimming microorganisms that are heavier than water. By bioconvection motion introduced in nanofluids, besides solving the instability issue and improving the suspension of nanoparticles (Kuznetsov 2011), the mixing nanoparticles issue could also be resolved, and these could enhance mass transfer in microvolumes (Sokolov et al. 2009; Tsai et al. 2009). Aziz et al. (2012) have numerically studied for free convection boundary layer flow past a horizontal flat plate, with nanofluid containing gyrotactic microorganisms, and found that the bioconvection parameters strongly influenced the mass, heat, and motile microorganisms transport rate.

In this paper, we combine the nanofluid equation model proposed by Buongiorno (2006) and the transformations proposed by Merkin (1977), with the present study limited to the case near the lower stagnation point of the cylinder, namely the steady laminar mixed convection boundary layer flow near the lower stagnation point of a horizontal circular cylinder embedded in a porous medium filled by a nanofluid containing gyrotactic microorganisms. The aim of this study is to understand the behaviour of nanofluid suspensions containing gyrotactic microorganisms at the fundamental level. The resulting nonlinear boundary layer equations are solved numerically using an efficient implicit finite-difference scheme, known as the Keller-box method, which is described in the book by Cebecli and Bradshaw (1984). The variations of the skin friction coefficient, local Nusselt number, local Sherwood number, local density number of the motile microorganisms as well as the velocity, temperature, nanoparticles volume fraction and density motile microorganisms profiles, for various values of the governing parameters, namely the mixed convection parameter, bioconvection Lewis number, traditional Lewis number, bioconvection Pécel number, buoyancy ratio parameter, bioconvection Rayleigh number, Brownian motion parameter and thermophoresis parameter, are investigated and illustrated through tables and figures. For comparison purposes, the present results are
compared with previously published results for the regular Newtonian fluid case (Cheng 1977; Nazar et al. 2003), and it is found that the comparisons show excellent agreement.

2. Basic Equations

We consider the steady mixed convection boundary layer flow past a heated or cooled horizontal circular cylinder of radius a embedded in a porous medium filled by a water-based nanofluid containing nanoparticles and gyrotactic microorganisms. The nanoparticle suspension is assumed to be stable (there is no nanoparticle agglomeration). There are experimental techniques that make it possible to prepare nanoparticle suspensions that remain stable for several weeks. The presence of nanoparticles is assumed to have no effect on the direction of microorganisms’ swimming and on their swimming velocity. This is a reasonable assumption if the nanoparticle suspension is dilute (nanoparticle concentration is less than 1%). Bioconvection induced flow is expected to occur only in a dilute suspension of nanoparticles; otherwise, a large concentration of nanoparticles would result in a large suspension viscosity, which would suppress bioconvection. It is assumed that the uniform temperature, the uniform nanoparticle volume fraction and the uniform density of motile microorganisms of the surface of the cylinder are \overline{T}_w, \overline{C}_w and \overline{n}_w, while the ambient values, attained as \overline{y} tends to infinity are \overline{T}_∞, \overline{C}_∞ and \overline{n}_∞, where $T_w > T_\infty$ for a heated cylinder (assisting flow) and $T_w < T_\infty$ for a cooled cylinder (opposing flow). It is also assumed that the velocity of the external flow (inviscid flow) is $\overline{u}_\infty(\overline{x})$, where \overline{x} is the coordinate measured along the surface of the cylinder starting from the lower stagnation point and \overline{y} is the coordinate measured in the direction normal to the surface of the cylinder. Further, it is assumed that the Oberbeck-Boussinesq approximation takes place and that the nanoparticle concentration is dilute. Under these assumptions, the governing equations, based on the models proposed by Buongiorno (2006) and Kuznetsov (2010), are

Continuity equation:
$$\nabla \cdot \overline{v} = 0$$

Momentum (Darcy) equation:
$$\frac{\mu}{k} \overline{v} = -\nabla \overline{p} + \left\{ \overline{C} \rho_p + (1-\overline{C}) \rho_{f\infty} \left[1 - \beta (\overline{T} - \overline{T}_\infty) \right] + \overline{n} \gamma \Delta \rho \right\} g$$

Thermal energy equation:
$$\overline{v} \cdot \nabla \overline{T} = a_{\infty} \nabla^2 \overline{T} + \left[D_T \nabla \overline{T} \cdot \nabla \overline{C} + (D_T / \overline{T}_\infty) \nabla \overline{T} \cdot \nabla \overline{T} \right]$$

Oxygen conservation equation:
$$\overline{v} \cdot \nabla \overline{C} = D_B \nabla^2 \overline{C} + \left(D_T / \overline{T}_\infty \right) \nabla \overline{T} \cdot \nabla \overline{T}$$

Conservation equation for microorganisms:
$$\nabla \cdot \overline{j} = 0$$
where \(\vec{j} \) is the flux of microorganisms, which is defined as

\[
\vec{j} = \bar{n} \vec{v} + \bar{n} \vec{\bar{v}} - D_n \vec{\bar{v}} \bar{n}
\]

(6)

In keeping with the Oberbeck-Boussinesq approximation and an assumption that the nanoparticle concentration is dilute, and with a suitable choice for the reference pressure, we can linearise the momentum equation and write Eq. (2) as

\[
\frac{\mu}{K} \vec{\bar{v}} = -\vec{\bar{v}} \bar{p} + [(\rho_p - \rho_{f,\omega})(C - C_{\omega}) - (1 - \bar{C}) \rho_{f,\omega} \beta (\bar{T} - \bar{T}_{\omega}) + \bar{n} \gamma \Delta \rho] \bar{g}
\]

(7)

Here \(\vec{v} \) is the fluid filtration velocity, \(\vec{\bar{v}} \) is the average directional swimming velocity of a microorganism, \(\bar{T} \) is the temperature, \(\bar{C} \) is the oxygen concentration, \(\bar{p} \) is the pressure, \(\bar{n} \) is the density of motile microorganisms, \(\bar{g} \) is the gravity vector, \(K \) is the permeability of the porous medium, \(\alpha_m \) is the effective thermal diffusivity of the porous medium, \(\mu \) and \(\beta \) are the viscosity and volume expansion coefficient of the fluid, \(\rho_p \) is the density of the particles, \(\Delta \rho = \rho_{m,\omega} - \rho_{f,\omega} \) is the density difference between the microorganism density, \(\rho_{m,\omega} \), and the base fluid density, \(\rho_{f,\omega} \), \(\gamma \) is the average volume of a microorganism, \(D_B \) is the Brownian diffusion coefficient, \(D_r \) is the thermophoretic diffusion coefficient of the microorganisms, \(D_n \) is the diffusivity of microorganisms, \(\bar{V}^2 \) is the Laplacian operator and \(\tau = (\rho c)_p / (\rho c)_f \) with \((\rho c)_p \) being the effective heat capacity of the nanoparticle material and \((\rho c)_f \) is the heat capacity of the fluid. We notice that \(\vec{\bar{v}} \) can be approximated as

\[
\vec{\bar{v}}(\vec{u}, \vec{v}) = (bW_c / \Delta \bar{C}) \vec{\bar{v}} \bar{C}
\]

(8)

where \(\vec{u} = (bW_c / \Delta \bar{C}) \partial \bar{C} / \partial \bar{x} \) and \(\vec{v} = (bW_c / \Delta \bar{C}) \partial \bar{C} / \partial \bar{y} \). Further, \(\Delta \bar{C} = \bar{C}_w - \bar{C}_\omega \) is the characteristic nanoparticle volume fraction, \(b \) is the chemotaxis constant \([m]\) and \(W_c \) is the maximum cell swimming speed \([m/s]\) (the product \(bW_c \) is assumed to be constant). The buoyancy term due to microorganisms’ upswimming in the momentum (Darcy) Eqs. (2) and (7) are based on the papers by Hillsdon and Pedley (1996), Eqs. (1), (3-5) and (7) can be written in the Cartesian coordinates as

\[
\frac{\partial \bar{u}}{\partial \bar{x}} + \frac{\partial \bar{v}}{\partial \bar{y}} = 0
\]

(9)

\[
\frac{\mu}{K} \bar{u} = -\frac{\partial \bar{p}}{\partial \bar{x}} + [(1 - \bar{C}_\omega) \rho_{f,\omega} \beta (\bar{T} - \bar{T}_{\omega}) - (\rho_p - \rho_{f,\omega})(\bar{C} - \bar{C}_\omega) - \bar{n} \gamma \Delta \rho] g \sin(\bar{x} / a)
\]

(10)

\[
\frac{\mu}{K} \bar{v} = -\frac{\partial \bar{p}}{\partial \bar{x}} - [(1 - \bar{C}_\omega) \rho_{f,\omega} \beta (\bar{T} - \bar{T}_{\omega}) - (\rho_p - \rho_{f,\omega})(\bar{C} - \bar{C}_\omega) - \bar{n} \gamma \Delta \rho] g \cos(\bar{x} / a)
\]

(11)
Mixed convection flow at the lower stagnation point of a circular cylinder embedded in a porous medium

\[
\bar{u} \frac{\partial \bar{T}}{\partial \bar{x}} + \bar{v} \frac{\partial \bar{T}}{\partial \bar{y}} = \alpha_n \left(\frac{\partial^2 \bar{T}}{\partial \bar{x}^2} + \frac{\partial^2 \bar{T}}{\partial \bar{y}^2} \right) + \tau \left\{ D_s \left(\frac{\partial \bar{T}}{\partial \bar{x}} \frac{\partial \bar{C}}{\partial \bar{x}} + \frac{\partial \bar{T}}{\partial \bar{y}} \frac{\partial \bar{C}}{\partial \bar{y}} \right) \right. \\
\left. + \left(\frac{D_t}{T_w} \right) \left(\frac{\partial \bar{T}}{\partial \bar{x}} \right)^2 + \left(\frac{\partial \bar{T}}{\partial \bar{y}} \right)^2 \right\}
\]

(12)

\[
\bar{u} \frac{\partial \bar{C}}{\partial \bar{x}} + \bar{v} \frac{\partial \bar{C}}{\partial \bar{y}} = D_s \left(\frac{\partial^2 \bar{C}}{\partial \bar{x}^2} + \frac{\partial^2 \bar{C}}{\partial \bar{y}^2} \right) + \left(\frac{D_t}{T_w} \right) \left(\frac{\partial \bar{T}}{\partial \bar{x}} \right)^2 + \left(\frac{\partial \bar{C}}{\partial \bar{y}} \right)^2
\]

(13)

\[
\frac{\partial}{\partial \bar{x}} \left[\bar{n} \bar{u} + \bar{n} \bar{u} - D_s \left(\frac{\partial \bar{n}}{\partial \bar{x}} + \frac{\partial \bar{n}}{\partial \bar{y}} \right) \right] + \frac{\partial}{\partial \bar{y}} \left[\bar{n} \bar{v} + \bar{n} \bar{v} - D_s \left(\frac{\partial \bar{n}}{\partial \bar{x}} + \frac{\partial \bar{n}}{\partial \bar{y}} \right) \right] = 0
\]

(14)

subject to the boundary conditions

\[\bar{v}(\bar{x}, \bar{y}) = 0, \quad \bar{T}(\bar{x}, \bar{y}) = \bar{T}_w, \quad \bar{C}(\bar{x}, \bar{y}) = \bar{C}_w, \quad \bar{n}(\bar{x}, \bar{y}) = \bar{n}_w \quad \text{at} \quad \bar{y} = 0, \quad 0 \leq \bar{x} \leq \pi \]

\[\bar{u}(\bar{x}, \bar{y}) \rightarrow \bar{u}_c(\bar{x}), \quad \bar{T}(\bar{x}, \bar{y}) \rightarrow \bar{T}_w, \quad \bar{C}(\bar{x}, \bar{y}) \rightarrow \bar{C}_w, \quad \bar{n}(\bar{x}, \bar{y}) \rightarrow \bar{n}_w \quad \text{as} \quad \bar{y} \rightarrow \infty, \quad 0 \leq \bar{x} \leq \pi \]

where \(\bar{u}_c(\bar{x}) = U_\infty \sin (\bar{x} / a)\). We introduce now the non-dimensional variables defined as

\[
x = \bar{x} / a, \quad y = Pe^{1/2} (\bar{y} / a), \quad u = \bar{u} / U_\infty, \quad v = Pe^{1/2} (\bar{v} / U_\infty) \\
T = (\bar{T} - \bar{T}_w) / \Delta \bar{T}, \quad C = (\bar{C} - \bar{C}_w) / \Delta \bar{C}, \quad n = (\bar{n} - \bar{n}_w) / \Delta \bar{n}
\]

(16)

where \(Pe = U_\infty a / \alpha_n\) is the Péclet number, \(\alpha_n\) is the effective thermal diffusivity of the porous medium, \(\Delta \bar{T} = \bar{T}_w - \bar{T}_w\) is the characteristic temperature, \(\Delta \bar{n} = \bar{n}_w - \bar{n}_w\) is the characteristic of the density motile microorganisms. Eliminating \(\vec{p}\) from Eqs. (10-11) by cross-differentiation, substituting (16) into the resulting equation, and considering the boundary layer approximation (\(Pe \rightarrow \infty\)), we obtain the following boundary layer equations for the problem under consideration:

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0
\]

(17)

\[
\frac{\partial u}{\partial y} = \left(\frac{\partial T}{\partial y} - N_f \frac{\partial C}{\partial y} - R_h \frac{\partial n}{\partial y} \right) \lambda \sin x
\]

(18)

\[
u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \frac{\partial^2 T}{\partial y^2} + \frac{\partial T}{\partial y} \frac{\partial C}{\partial y} + N_l \left(\frac{\partial T}{\partial y} \right)^2
\]

(19)

\[
Le \left(\frac{u}{\partial x} + v \frac{\partial C}{\partial y} \right) = \frac{\partial^2 C}{\partial y^2} + \frac{N_l}{N_b} \frac{\partial^2 T}{\partial y^2}
\]

(20)
\[
\begin{aligned}
\frac{\partial n}{\partial x} + v \frac{\partial n}{\partial y} + \frac{Pb}{Lb} \frac{\partial}{\partial y} \left(\frac{\sigma + n}{Lb} \frac{\partial C}{\partial y} \right) = \frac{1}{Lb} \frac{\partial^2 n}{\partial y^2}
\end{aligned}
\]
(21)

where Eq. (17) is used to obtain Eq. (21). The boundary conditions (15) become

\[
\begin{aligned}
&v(x,y)=0, \quad T(x,y)=1, \quad C(x,y)=1, \quad n(x,y)=1 \quad \text{at} \quad y=0, \quad 0 \leq x \leq \pi \\
u(x,y) \rightarrow u_e(x), \quad T(x,y) \rightarrow 0, \quad C(x,y) \rightarrow 0, \quad n(x,y) \rightarrow 0 \quad \text{as} \quad y \rightarrow \infty, \quad 0 \leq x \leq \pi
\end{aligned}
\]
(22)

where we assume that \(u_e(x) = \sin x \) (see Merkin (1977)). Here \(\lambda \) is the constant mixed convection parameter, \(Lb \) is the bioconvection Lewis number, \(Le \) is the traditional Lewis number, \(Pb \) is the bioconvection Péclet number, \(Nr \) is the buoyancy ratio parameter, \(Rb \) is the bioconvection Rayleigh number, \(Nb \) is the Brownian motion parameter, \(Nt \) is the thermophoresis parameter and \(\sigma \) is the motile parameter which are defined as

\[
\begin{aligned}
&\lambda = \frac{Ra}{Pe}, \quad Lb = \frac{\alpha_m}{D_n}, \quad Le = \frac{\alpha_m}{D_n}, \quad Pb = \frac{bW_c}{D_n}, \quad Nr = \frac{(\rho_p - \rho_f)\Delta \tilde{C}}{\rho_f (1 - \tilde{C}) \beta \Delta T} \\
&Rb = \frac{\gamma \Delta \tilde{n} \Delta \rho}{\rho_f \beta \Delta T}, \quad Nb = \frac{\tau D_r \Delta \tilde{C}}{\alpha_m \Delta \tilde{n}}, \quad Nt = \frac{\tau D_r \Delta T}{\alpha_m \Delta \tilde{n}}, \quad \sigma = \frac{\bar{n}_m}{\Delta \tilde{n}}
\end{aligned}
\]
(23)

with \(Ra = (1 - \tilde{C}) g K \rho_f \beta \Delta T a / (\mu \alpha_m) \) being the modified Rayleigh number for the porous medium. It is worth mentioning that \(\lambda > 0 \) for an assisting flow \((T_e > T_\infty)\), \(\lambda < 0 \) for an opposing flow \((T_e < T_\infty)\) and \(\lambda = 0 \) for the forced convection flow, respectively. Integrating Eq. (18) and using the boundary conditions (22), we obtain

\[
u = \sin x + (T - Nr C - Rb n) \lambda \sin x
\]
(24)

In order to solve Eqs. (17), (19-21) and (24), we follow the method proposed by Merkin (1977) and introduce the following variables:

\[
\psi = x f(x,y), \quad T = \theta(x,y), \quad C = \phi(x,y), \quad n = \tilde{\chi}(x,y)
\]
(25)

where \(\psi \) is the stream function, which is defined in the usual way as \(u = \partial \psi / \partial y \) and \(v = -\partial \psi / \partial x \). Substituting the variables (25) into Eqs. (19-21) and (24), we obtain

\[
\frac{\partial f}{\partial y} = \left[1 + (\theta - Nr \phi - Rb \tilde{\chi}) \lambda \right] \frac{\sin x}{x}
\]
(26)

\[
\frac{\partial^2 \theta}{\partial y^2} + f \frac{\partial \theta}{\partial y} + Nb \frac{\partial \theta}{\partial y} \frac{\partial \phi}{\partial y} + Nr \left(\frac{\partial \theta}{\partial y} \right)^2 = 0 \left(\frac{\partial f}{\partial y} \frac{\partial \theta}{\partial x} - \frac{\partial f}{\partial x} \frac{\partial \theta}{\partial y} \right)
\]
(27)
\[
\frac{\partial^2 \phi}{\partial y^2} + Le f \frac{\partial \phi}{\partial y} + \frac{Nt}{Nb} \frac{\partial^2 \theta}{\partial y^2} = x Le \left(\frac{\partial f}{\partial y} \frac{\partial \phi}{\partial x} - \frac{\partial f}{\partial x} \frac{\partial \phi}{\partial y} \right)
\]

(28)

\[
\frac{1}{Lb} \frac{\partial^2 \chi}{\partial y^2} + f \frac{\partial \chi}{\partial y} - \frac{Pb}{Lb} \frac{\partial}{\partial y} \left((\sigma + \chi) \frac{\partial \phi}{\partial y} \right) = \frac{x}{x} \left(\frac{\partial f}{\partial y} \frac{\partial \chi}{\partial x} - \frac{\partial f}{\partial x} \frac{\partial \chi}{\partial y} \right)
\]

(29)

with the boundary conditions

\[
f(x, y) = 0, \quad \theta(x, y) = 1, \quad \phi(x, y) = 1, \quad \chi(x, y) = 1 \quad \text{at} \quad y = 0, \quad 0 \leq x \leq \pi
\]

\[
f'(x, y) \to \frac{\sin x}{x}, \quad \theta(x, y) \to 0, \quad \phi(x, y) \to 0, \quad \chi(x, y) \to 0, \quad \text{as} \quad y \to \infty, \quad 0 \leq x \leq \pi
\]

(30)

It can be seen that near the lower stagnation point of the cylinder, i.e. \(x = 0\), Eqs. (26-29) reduce to the following ordinary differential equations:

\[
f'' = 1 + \left(\theta - \gamma \phi - \beta \chi \right) \lambda
\]

(31)

\[
\theta'' + f \frac{\theta'}{\theta'} + \frac{Nt}{Nb} \phi' + \frac{Nt}{\theta'} = 0
\]

(32)

\[
\phi'' + Le f \frac{\phi'}{\phi'} + \frac{Nt}{Nb} \theta'' = 0
\]

(33)

\[
\chi'' + Lb f \frac{\chi'}{\chi'} - \frac{Pb}{Lb} \left[\chi' \phi' + (\sigma + \chi) \phi'' \right] = 0
\]

(34)

with the boundary conditions (30) become

\[
f = 0, \quad \theta = 1, \quad \phi = 1, \quad \chi = 1 \quad \text{at} \quad y = 0
\]

\[
f' = 1, \quad \theta' \to 0, \quad \phi' \to 0, \quad \chi' \to 0, \quad \text{as} \quad y \to \infty
\]

(35)

where primes denote differentiation with respect to \(y\).

The quantities of practical interest in this study are the skin friction coefficient \(C_f\), the local Nusselt number \(Nu_x\), the local Sherwood number \(Sh_x\) and the local density number of the motile microorganisms \(Nn_x\) which are defined as

\[
C_f = \frac{\tau}{\rho u^2}, \quad Nu_x = \frac{\chi}{k \Delta T}, \quad Sh_x = \frac{\chi \bar{q}_m}{D_b \Delta C}, \quad Nn_x = \frac{\bar{q}_m}{D_n \Delta n}
\]

(36)

where \(\bar{q}_m\), \(\bar{q}_m\), and \(\bar{q}_m\) are the wall heat, the wall mass and the wall motile microorganisms fluxes, respectively, and are defined as

\[
\bar{q}_m = \mu \left(\frac{\partial u}{\partial y} \right)_{y=0}, \quad \bar{q}_m = -k \left(\frac{\partial T}{\partial y} \right)_{y=0}, \quad \bar{q}_m = -D_b \left(\frac{\partial C}{\partial y} \right)_{y=0}, \quad \bar{q}_m = -D_n \left(\frac{\partial n}{\partial y} \right)_{y=0}
\]

(37)

Using variables (16) and (24), we obtain
\[(Pe_{x}^{1/2} / Pr) C_f = \frac{\partial f}{\partial y}(x,0), \quad Pe_{x}^{1/2} Nu_x = -\frac{\partial \theta}{\partial y}(x,0)\]

\[Pe_{x}^{1/2} Sh_x = -\frac{\partial \phi}{\partial y}(x,0), \quad Pe_{x}^{1/2} Nn_x = -\frac{\partial \chi}{\partial y}(x,0)\]

where \(Pe_x = \bar{u}_x(\bar{x})/\alpha_x\) is the local Péclet number. At the lower stagnation point of the cylinder, i.e. \(x = 0\), the quantities of practical interest reduce to

\[(Pe_{x}^{1/2} / Pr) C_f = f'(0), \quad Pe_{x}^{1/2} Nu_x = -\theta'(0)\]

\[Pe_{x}^{1/2} Sh_x = -\phi'(0), \quad Pe_{x}^{1/2} Nn_x = -\chi'(0)\]

where primes denote differentiation with respect to \(y\).

3. Results and Discussion

At the lower stagnation point of the cylinder, i.e. \(x = 0\), Eqs. (31-34) subject to the boundary conditions (35) have been solved numerically for different values of the parameters, namely the mixed convection parameter \(\lambda\), the bioconvection Lewis number \(Lb\), the traditional Lewis number \(Le\), the bioconvection Péclet number \(Pb\), the buoyancy ratio \(N\), the bioconvection Rayleigh number \(Rb\), the Brownian motion \(Nb\) and the thermophoresis \(Nt\), using an efficient implicit finite-difference scheme known as the Keller-box method along with the Newton’s linearisation technique as described by Cebeci and Bradshaw (1984) for both the assisting (\(\lambda > 0\)) and opposing (\(\lambda < 0\)) flow cases. The specific ranges of the dimensionless variables chosen for numerical computations were based on the existing literature values (Aziz et al. 2012). On the other hand, it is worth mentioning that we have considered the value of the motile parameter \(s = 1\) throughout the computations.

In order to verify the accuracy of the present method, we have compared the present values of the heat transfer coefficient \(-\theta'(0)\) with those reported by Cheng (1977) and Nazar et al. (2003) for regular Newtonian fluid at various values of \(\lambda\), as presented in Table 1. We found that the comparison between these results are in excellent agreement. As such, we are confident that the present numerical method used and the results obtained are reliable.

<table>
<thead>
<tr>
<th>(\lambda)</th>
<th>Cheng (1977)</th>
<th>Nazar et al. (2003)</th>
<th>Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.1</td>
<td>0.4192</td>
<td>0.4193</td>
<td>0.4192</td>
</tr>
<tr>
<td>-1.0</td>
<td>0.4697</td>
<td>0.4698</td>
<td>0.4696</td>
</tr>
<tr>
<td>-0.5</td>
<td>0.6575</td>
<td>0.6576</td>
<td>0.6575</td>
</tr>
<tr>
<td>0</td>
<td>0.7980</td>
<td>0.7980</td>
<td>0.7979</td>
</tr>
<tr>
<td>0.5</td>
<td>0.9157</td>
<td>0.9156</td>
<td>0.9156</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0192</td>
<td>1.0191</td>
<td>1.0191</td>
</tr>
<tr>
<td>2.0</td>
<td>1.1988</td>
<td>1.1987</td>
<td>1.1987</td>
</tr>
<tr>
<td>3.0</td>
<td>1.3543</td>
<td>1.3541</td>
<td>1.3542</td>
</tr>
<tr>
<td>4.0</td>
<td>1.4934</td>
<td>1.4932</td>
<td>1.4932</td>
</tr>
<tr>
<td>5.0</td>
<td>1.6204</td>
<td>1.6202</td>
<td>1.6202</td>
</tr>
</tbody>
</table>

To be continued...
...Continuation

It is observed from Table 2 that for sufficiently large negative values of \(\lambda \) or sufficiently cold cylinder, there will not be a boundary layer on the cylinder. It is shown that the largest considered bioconvection Rayleigh number (\(Rb = 0.3 \)) has the furthest existing negative values of \(\lambda \), which has a larger range to sustain as laminar flow during the opposing flow case, before the boundary layer starts to separate.

<table>
<thead>
<tr>
<th>(\lambda)</th>
<th>(Rb = 0.1)</th>
<th>(Rb = 0.2)</th>
<th>(Rb = 0.3)</th>
<th>(Rb = 0.1)</th>
<th>(Rb = 0.2)</th>
<th>(Rb = 0.3)</th>
<th>(Rb = 0.1)</th>
<th>(Rb = 0.2)</th>
<th>(Rb = 0.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2.4</td>
<td>0.2480</td>
<td>0.3415</td>
<td>0.5975</td>
<td>0.2480</td>
<td>0.3415</td>
<td>0.5975</td>
<td>0.2480</td>
<td>0.3415</td>
<td>0.5975</td>
</tr>
<tr>
<td>-2.2</td>
<td>0.2655</td>
<td>0.4135</td>
<td>0.7624</td>
<td>0.2655</td>
<td>0.4135</td>
<td>0.7624</td>
<td>0.2655</td>
<td>0.4135</td>
<td>0.7624</td>
</tr>
<tr>
<td>-2.0</td>
<td>0.2895</td>
<td>0.5050</td>
<td>0.9682</td>
<td>0.2895</td>
<td>0.5050</td>
<td>0.9682</td>
<td>0.2895</td>
<td>0.5050</td>
<td>0.9682</td>
</tr>
<tr>
<td>-1.8</td>
<td>0.2938</td>
<td>0.3234</td>
<td>0.6187</td>
<td>0.2938</td>
<td>0.3234</td>
<td>0.6187</td>
<td>0.2938</td>
<td>0.3234</td>
<td>0.6187</td>
</tr>
<tr>
<td>-1.6</td>
<td>0.3355</td>
<td>0.3675</td>
<td>0.7486</td>
<td>0.3355</td>
<td>0.3675</td>
<td>0.7486</td>
<td>0.3355</td>
<td>0.3675</td>
<td>0.7486</td>
</tr>
<tr>
<td>-1.4</td>
<td>0.3137</td>
<td>0.3857</td>
<td>0.4168</td>
<td>0.3137</td>
<td>0.3857</td>
<td>0.4168</td>
<td>0.3137</td>
<td>0.3857</td>
<td>0.4168</td>
</tr>
<tr>
<td>-1.2</td>
<td>0.3910</td>
<td>0.4392</td>
<td>0.4660</td>
<td>0.3910</td>
<td>0.4392</td>
<td>0.4660</td>
<td>0.3910</td>
<td>0.4392</td>
<td>0.4660</td>
</tr>
<tr>
<td>-1.0</td>
<td>0.4598</td>
<td>0.4914</td>
<td>0.5128</td>
<td>0.4598</td>
<td>0.4914</td>
<td>0.5128</td>
<td>0.4598</td>
<td>0.4914</td>
<td>0.5128</td>
</tr>
<tr>
<td>-0.8</td>
<td>0.5187</td>
<td>0.5407</td>
<td>0.5569</td>
<td>0.5187</td>
<td>0.5407</td>
<td>0.5569</td>
<td>0.5187</td>
<td>0.5407</td>
<td>0.5569</td>
</tr>
<tr>
<td>-0.6</td>
<td>0.5724</td>
<td>0.5869</td>
<td>0.5983</td>
<td>0.5724</td>
<td>0.5869</td>
<td>0.5983</td>
<td>0.5724</td>
<td>0.5869</td>
<td>0.5983</td>
</tr>
<tr>
<td>-0.4</td>
<td>0.6215</td>
<td>0.6302</td>
<td>0.6373</td>
<td>0.6215</td>
<td>0.6302</td>
<td>0.6373</td>
<td>0.6215</td>
<td>0.6302</td>
<td>0.6373</td>
</tr>
<tr>
<td>-0.2</td>
<td>0.6669</td>
<td>0.6710</td>
<td>0.6742</td>
<td>0.6669</td>
<td>0.6710</td>
<td>0.6742</td>
<td>0.6669</td>
<td>0.6710</td>
<td>0.6742</td>
</tr>
<tr>
<td>0</td>
<td>0.7094</td>
<td>0.7096</td>
<td>0.7094</td>
<td>0.7094</td>
<td>0.7096</td>
<td>0.7094</td>
<td>0.7094</td>
<td>0.7096</td>
<td>0.7094</td>
</tr>
<tr>
<td>0.2</td>
<td>0.7494</td>
<td>0.7464</td>
<td>0.7429</td>
<td>0.7494</td>
<td>0.7464</td>
<td>0.7429</td>
<td>0.7494</td>
<td>0.7464</td>
<td>0.7429</td>
</tr>
<tr>
<td>0.4</td>
<td>0.7873</td>
<td>0.7814</td>
<td>0.7751</td>
<td>0.7873</td>
<td>0.7814</td>
<td>0.7751</td>
<td>0.7873</td>
<td>0.7814</td>
<td>0.7751</td>
</tr>
<tr>
<td>0.6</td>
<td>0.8235</td>
<td>0.8150</td>
<td>0.8060</td>
<td>0.8235</td>
<td>0.8150</td>
<td>0.8060</td>
<td>0.8235</td>
<td>0.8150</td>
<td>0.8060</td>
</tr>
<tr>
<td>0.8</td>
<td>0.8581</td>
<td>0.8473</td>
<td>0.8358</td>
<td>0.8581</td>
<td>0.8473</td>
<td>0.8358</td>
<td>0.8581</td>
<td>0.8473</td>
<td>0.8358</td>
</tr>
<tr>
<td>1.0</td>
<td>0.8913</td>
<td>0.8784</td>
<td>0.8646</td>
<td>0.8913</td>
<td>0.8784</td>
<td>0.8646</td>
<td>0.8913</td>
<td>0.8784</td>
<td>0.8646</td>
</tr>
<tr>
<td>1.2</td>
<td>0.9233</td>
<td>0.9084</td>
<td>0.8924</td>
<td>0.9233</td>
<td>0.9084</td>
<td>0.8924</td>
<td>0.9233</td>
<td>0.9084</td>
<td>0.8924</td>
</tr>
<tr>
<td>1.4</td>
<td>0.9543</td>
<td>0.9375</td>
<td>0.9195</td>
<td>0.9543</td>
<td>0.9375</td>
<td>0.9195</td>
<td>0.9543</td>
<td>0.9375</td>
<td>0.9195</td>
</tr>
<tr>
<td>1.6</td>
<td>0.9842</td>
<td>0.9657</td>
<td>0.9458</td>
<td>0.9842</td>
<td>0.9657</td>
<td>0.9458</td>
<td>0.9842</td>
<td>0.9657</td>
<td>0.9458</td>
</tr>
<tr>
<td>1.8</td>
<td>1.0133</td>
<td>0.9931</td>
<td>0.9713</td>
<td>1.0133</td>
<td>0.9931</td>
<td>0.9713</td>
<td>1.0133</td>
<td>0.9931</td>
<td>0.9713</td>
</tr>
<tr>
<td>2.0</td>
<td>1.0415</td>
<td>1.0198</td>
<td>0.9963</td>
<td>1.0415</td>
<td>1.0198</td>
<td>0.9963</td>
<td>1.0415</td>
<td>1.0198</td>
<td>0.9963</td>
</tr>
<tr>
<td>3.0</td>
<td>1.1724</td>
<td>1.1440</td>
<td>1.1126</td>
<td>1.1724</td>
<td>1.1440</td>
<td>1.1126</td>
<td>1.1724</td>
<td>1.1440</td>
<td>1.1126</td>
</tr>
<tr>
<td>4.0</td>
<td>1.2899</td>
<td>1.2559</td>
<td>1.2357</td>
<td>1.2899</td>
<td>1.2559</td>
<td>1.2357</td>
<td>1.2899</td>
<td>1.2559</td>
<td>1.2357</td>
</tr>
<tr>
<td>5.0</td>
<td>1.3976</td>
<td>1.3587</td>
<td>1.3273</td>
<td>1.3976</td>
<td>1.3587</td>
<td>1.3273</td>
<td>1.3976</td>
<td>1.3587</td>
<td>1.3273</td>
</tr>
</tbody>
</table>

Figure 1 shows the comparison of the effect of nanofluid and bioconvection parameters on different dimensionless profiles with regular base fluid case. We observed that the velocity profile has more significant impact, possibly due to the bioconvection phenomena, the average density of upwardly swimming microorganisms is slightly larger than that of water.

Figures 2 to 4 illustrate the effects of bioconvection parameters on the velocity profiles. It is observed that, for the assisting flow case, the velocity profile decreases at the surface with an increase in the bioconvection Rayleigh number, while it increases for the opposing flow case. For the assisting flow, due to the bioconvection plumes (a phenomenon of downward motion of the fluid), and plus the buoyancy factor, an oppose upward motion of the nanofluid occurs, and as a result, the velocity decreases as \(Rb \) increases.

Figure 2 shows that the velocity profile depends on the buoyancy ratio parameter, \(Nr \) and the bioconvection Rayleigh number \(Rb \). During the assisting flow, the velocity profile
slightly increases relatively as the buoyancy ratio parameter Nr increases. The effects of the bioconvection parameters Lb and Pb along with Rb are shown in Figs. 3 and 4, respectively. The velocity profile eventually slightly decreases relatively as Lb increases, and increases relatively as Pb increases.

![Image](image_url)

Figure 1: Effect of nanofluid and bioconvection parameters on the velocity, temperature, nanoparticle concentration profiles
Figure 2: Effect of bioconvection Rayleigh number and buoyancy parameters on the velocity profiles, for the assisting and opposing flows.

Figure 3: Effect of bioconvection Rayleigh and Lewis numbers on the velocity profiles, for the assisting and opposing flows.
Figures 5 to 7 illustrate the effects of the bioconvection parameters on the temperature profiles. The temperature profiles appeared to be weakly dependent on all the Rb, Nr, Lb and Pb parameters. On the other hand, the opposite result occurs for the assisting flow, namely as Rb, Nr, Lb and Pb parameters increase, the temperature profile decreases.
Mixed convection flow at the lower stagnation point of a circular cylinder embedded in a porous medium

Figure 6: Effect of bioconvection Rayleigh and Lewis numbers on the temperature profiles, for the assisting and opposing flows

Figure 7: Effect of bioconvection Rayleigh and Péclet numbers on the temperature profiles, for the assisting and opposing flows
Figures 8 to 10 show the effects of bioconvection parameters on the nanoparticle concentration profiles. The nanoparticle concentration profiles are weakly dependent on all the \(Rb, Nr, Lb \) and \(Pb \) parameters. However, for the assisting flow, as \(Rb, Nr, Lb \) and \(Pb \) parameters increase, the temperature profile decreases; and the opposite pattern occurs for the opposing flow.

Figures 11 to 13 present the effects of bioconvection parameters on the density of motile microorganisms profiles. The density of motile microorganisms profiles are relatively sensitive and strongly influenced by the changes in \(Lb-Rb \) and \(Pb-Rb \), which can be seen in Figs. 12 and 13, while for the assisting flow, as \(Rb, Nr, Lb \) and \(Pb \) parameters increase, the motile microorganisms profile decreases; and the opposite pattern occurs for the opposing flow.

Figure 8: Effect of bioconvection Rayleigh number and buoyancy parameters on the nanoparticle concentration profiles, for the assisting and opposing flows.
Mixed convection flow at the lower stagnation point of a circular cylinder embedded in a porous medium

Figure 9: Effect of bioconvection Rayleigh and Lewis numbers on the nanoparticle concentration profiles, for the assisting and opposing flows

Figure 10: Effect of bioconvection Rayleigh and Péclet numbers on the nanoparticle concentration profiles, for the assisting and opposing flows
Figure 11: Effect of bioconvection Rayleigh number and buoyancy parameters on the microorganism profiles, for the assisting and opposing flows.

Figure 12: Effect of bioconvection Rayleigh and Lewis numbers on the microorganism profiles, for the assisting and opposing flows.
4. Conclusions

In this paper, we have studied the problem of steady laminar mixed convection boundary layer flow over an isothermal horizontal circular embedded in a porous medium filled by a nanofluid containing gyrotactic microorganisms at lower stagnation point of the cylinder. We have looked into the effects of the mixed convection parameter λ, the bioconvection Lewis number Lb, the traditional Lewis number Le, the bioconvection Péclet number Pb, the buoyancy ratio Nr, the bioconvection Rayleigh number Rb, the Brownian motion Nb and the thermophoresis Nt on the velocity, temperature, nanoparticle concentration and microorganism distributions in the flow field. The governing boundary layer equations were solved numerically using the Keller-box method. From this study, we could draw the following conclusions:

- The numerical data indicates no significant effect of the bioconvection parameters on the temperature and nanoparticle concentration distributions in the flow field. However, the bioconvection Péclet number Pb have a significant impact on the velocity and density of motile microorganisms profiles.

- For the assisting flow, the local Nusselt number, Sherwood number and density number of the motile microorganisms decrease as Rb increases.

- For the opposing flow, the local Nusselt number, Sherwood number and density number of the motile microorganisms increases as Rb increases.
Acknowledgement

The authors would like to acknowledge the financial support received in the form of fundamental research grant scheme (FRGS/1/2011/SG/UKM/02/18) from the Ministry of Higher Education, Malaysia.

References

1Fakulti Industri Asas Tani
Universiti Malaysia Kelantan
Kampus Jeli
17600 Jeli
Kelantan DN, MALAYSIA
Mel-e: leonytham@gmail.com

2Pusat Pengajian Sains Matematik
Fakulti Sains dan Teknologi
Universiti Kebangsaan Malaysia
43600 UKM Bangi
Selangor DE, MALAYSIA
Mel-e: rrm@ukm.my

3Faculty of Mathematics
University of Cluj
R-3400 Cluj, CP-253
ROMANIA
E-mail: popm.ioan@yahoo.co.uk

*Corresponding author