Sains Malaysiana 35(2): 9-15 (2006)


Responses of Different Strains of Saccharomyces cerevisiae

to Osmotic Stress

(Tindak Balas Pelbagai Strain Saccharomyces cerevisiae

Terhadap Tekanan Osmotik)



Noorhisham Tan Kofli

Department of Chemical and Process Engineering

Faculty of Engineering

Universiti Kebangsaan Malaysia

43600 UKM Bangi, Selangor, Malaysia


Keisuke Nagahisa & Suteaki Shioya

Department of Biotechnology

Graduate of School Engineering

Osaka University, 2-1 Yamada-oka, Suita-shi

Osaka 565-0871, Japan


Hiroshi Shimizu

Department of Bioinformatic Engineering

Graduate School of Information Science and Technology

Osaka University, 2-1 Yamada-oka, Suita-shi

Osaka 565-0871, Japan





Semasa fermentasi, sel berada  dalam keadaan pelbagai tekanan. Salah satu tekanan yang penting adalah  persekitaran  osmotik yang tinggi yang mesti diatasi untuk meneruskan pertumbuhan. Untuk memahami bagaimana sel beradaptasi terhadap kesan ini, maklumat di peringkat genom, proteom dan metabolom  adalah amat penting. Adalah dilaporkan, yis sel menghasilkan gliserol untuk mengelakkan kekurangan air dalam sel yang boleh membawa kepada mengecutan sel dan seterusnya kematian. Oleh itu kajian kesan fisiologi telah dijalankan dalam kelalang goncang menggunakan 3 jenis strain Saccharomomyces cerevisiae yang  berbeza iaitu s288c, IFO2347 dan FY834 yang telah ditumbuhkan dalam medium yis dekstrosa kentang (YPD) dengan penambahan natrium klorida dan sorbitol pada kepekatan 1M untuk menghasilkan keadaan osmotik. Kedua-dua agen ini ditambah kepada medium selepas 5 jam fermentasi iaitu sewaktu sel berada di fasa eksponen dan sumber karbon yang masih wujud. Keputusan membuktikan penambahan kedua-dua agen  natrium klorida dan sorbitol dapat menghasilkan keadaan osmotik sewaktu pertumbuhan  dengan pengumpulan gliserol dan trehalos bila dibandingkan dengan kawalan.  Bagi ketiga-tiga strain ini, penghasilan gliserol (g gliserol/g sel berat kering) didapati tertinggi pada IFO2347, diikuti s288c dan FY834.


Kata kunci: Saccharomyces cerevisiae; tekanan osmotik; gliserol; trehalos





During fermentation cells are subjected to various kinds of stress. One of the stresses concerned is high osmotic environment, which cells need to encounter in order to continue growing. To understand how cells adapt to this stress condition, information from genome, proteome and metabolome levels are crucial. In yeast cells, it was report that they produce glycerol to avoid depletion of water in the cell that could lead to cell shrinkage and eventually death. Thus, investigation of physiological responses were executed by shake flask method using three different Saccharomyces cerevisiae strains namely s288c, IFO2347 and FY834 which were grown  in  yeast potato dextrose (YPD)  medium under the treatment of sodium chloride (NaCl) and sorbitol at 1M concentration to create the osmotic condition. These agents were added into the medium after 5 hours of fermentation when the cells reached exponential phase and carbon source is still available. The results proved that addition of both NaCl and sorbitol created the osmotic condition during growth resulted in higher accumulation of glycerol and trehalose when compared to the control in all strains. Among these strains, production of glycerol (g glycerol/g cell dry weight) was found highest in IFO2347,  followed by s288c and FY834.


Keywords:  Saccharomyces cerevisiae; osmotic stress; glyserol; trehalose





Albertyn, J., Hohmann, S., Thevelein, J.M. and Prior, B.A. 1994. GPD1, which encodes glycerol-3-phospahte dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high osmolarity response pathway. Mol. Cell. Biol., 14: 4135-4144.

Attfield, P.V. 1994. Trehalose accumulates in Saccharomyces cerevisiae during exposure to agents that induce heat shock response. FEBS Lett., 225: 259-263.

Bellinger, Y. and Larher, F. 1987. A 13C comparative nuclear magnetic resonance study of organic solute production and excretion by the yeast Hensenula anomala and Saccharomyces cerevisiae in saline media. Can. J. Microbiol., 34: 605-612

Blomberg, A. 1997. The osmotic hypersensitivity of the yeast Saccharomyces cerevisiae is straib abd growth media dependent : quantitative aspects of the phenomenon. Yeast, 13: 529-539.

Blomberg, A. 2000. Metabolic surprises in Saccharomyces cerevisiae during adaptation to saline conditions: questions, some answers and a model. FEMS Microbiol. Lett., 182 (1): 1-8.

Blomberg, A. and Adler, L. 1992. Physiology of osmotolerance in fungi. Adv. Microb. Physiol., 33 : 145.

Brown, A.D. 1978. Compatible solute and extreme water stress in eukaryotic micro-organisms. Adv. Microb. Phys., 17: 181-242.

d’Amore, T., Crumplen, R and Steward, G.G. 1991. The involvement of trehalose in yeast stress tolerance. J. Ind. Microbiol., 7: 191-196.

de Virgillio, C., Hottiger, T., Dominguez, J., Boller, T and Wiemken, A. 1994.  The role of trehalose synthesis for the acquisition of thermotolerance in yeast. I. Genetic evidence that trehalose is a thermoprotectant. Eur. J. Biochem., 219: 179-186.

Eriksson, P., Andre, L., Ansell, R., Blomberg, A. and Adler, L. 1995. Cloning and characterization of GPD2, a second gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) in Saccharomyces cerevisiae, and its comparison with GPD1. Mol. Microbiol., 17: 95-107 .

Gadd, G.M., Chalmers, K and Reed, R.H. 1987. The role of trehalose in dehydration resistance of Saccharomyces cerevisiae. FEMS Microbiol. Lett., 48: 249-254.

Hottiger, T., Boller, T and Wiemken, A. 1987. Rapid changes of heat and dessication tolerance correlated with changes of trehalose content in Saccharomyces cerevisiae cells subjected to temperature shifts. FEBS Lett., 220: 113-115.

Hounsa, C-G., Brandt, E.V., Thevelein, J., Hohman, S. and Prior, B.A. 1998. Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress. Microbiol., 144: 671-680.

Ivorra, C., Perez-Ortin, J.E., del Olmo, M. 1999. An inverse correlation between stress resistance and stuck fermentations in wine yeast : a molecular study. Biotech. Bioeng., 64 (6) : 698-708.

Lewis, J.G., Learmonth, R.P. and Watson, K. 1995. Induction of heat, freezing and salt tolerance by heat and salt shock in Saccharomyces cerevisiae. Microbiol., 141: 687-694.

MacKenzie, K.F., Singh, K.K. and Grown, A.D. 1988. Water stress plating hypersensitivity of yeast : protective role of trehalose in Saccharomyces cerevisiae. J. Gen. Microbiol., 134: 1661-1666.

Meikle, A.J., Reed, R.H. and Gadd, G.M. 1991. The osmotic response of Saccharomyces cerevisiae in K+-depleted medium. FEMS Microbiol. Lett., 78 : 89-94.

Morris, G.J., Winters, L., Coulson, G.E. and Clarke, K.J. 1986. Effect of osmotic stress on the ultrastructure and viability of the yeast Saccharomyces cerevisiae. J. of Gen. Microbiol., 132 : 2023-2034.

Nevoigt, E. and Stahl, U. 1997 Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Rev., 21 (3): 231-241.

Norbeck, J. and Blomberg, A. 1996. Protein expression during exponential growth in 0.7M NaCl medium of Saccharamyces cerevisiae. FEMS Microbiol. Letts., 137: 1-8.

Larsson, K., Absell, R., Eriksson, P. and Adler, L. 1993. A gene controlling sn-glycerol 3-phosphate dehydrogenase (NAD+) complements an osmosensitive mutant of Saccharomyces cerevisiae. Mol. Microbiol., 10 : 1101-1111.

Lillie, S.H. and Pringle, J.R. 1980. Reserve carbohydrate metabolism in Saccharomyces cerevisiae : responses to nutrient limitation. J. of Bacteriol., 143 (3) : 1384-1394.

Olz, R., Larsson, K., Adler, L. and Gustafsson 1993. Energy flux and osmoregulation of Saccharomyces cerevisiae grown in chemostat under NaCl stress. J. Bacteriol., 175 :2205-2213

Onishi, H. 1963. Osmophilic Yeasts. Adv. In Food Res., 12 : 53-94.

Reed, R.H., Chudek, J.A., Foster, R. and Gadd, G.M. 1987. Osmotic significance of glycerol accumulation in exponentially growing yeasts. Appl. Environ. Microbiol., 53 : 2119-2123

Sharma, S.C. 1997. A possible role of trehalose in osmotolerance and ethanol tolerance in Saccharomyces cerevisiae. FEMS Microbiol. Lett., 152(1) : 11-15.

Sharma S.G., Raj, D., Forouzandeh, M. and Bansal, M.P. 1996. Salt-induced changes in lipid composition and ethanol tolerance in Saccharomyces cerevisiae. Appl. Biochem. Biotechnol., 56 (2) : 189-195

Spiro (1966). Analysis of sugars found in glycoproteins. Meth. Enzy., 8 : 3-19.

Winston, F., Dollard, C. and Ricupero-Hovasse, S. 1995 Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to s288c. Yeast, 11 : 53-55.