Sains Malaysiana 39(1)(2010): 65–71

 

Elektrolit Pepejal Polimer 49% Poli (Metil Metakrilat) Cangkukan

Getah Asli - Litium Tetrafluoroborat

(Solid Polymer Electrolyte 49% Poly(Methly Methacrylate)-Grafted

Natural Rubber-Lithium Tetrafluoroborate)

 

Azizan Ahmad*, Pow CheeLien & Mohd Sukor Su'ait

Pusat Pengajian Sains Kimia dan Teknologi Makanan

Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia

43600 Bangi, Selangor D.E., Malaysia

 

Received: 16 February 2009 / Accepted: 19 June 2009

 

ABSTRAK

 

Potensi 49% poli(metil metakrilat) cangkukan getah asli (MG49) sebagai elektrolit pepejal polimer untuk diaplikasi dalam sistem peranti elektrokimia telah dikaji. Filem MG49 dengan garam LiBF4 sebagai dopan disediakan dengan menggunakan teknik pengacuan larutan. Kekonduksian ion yang diuji dengan menggunakan alat spektroskopi impedans elektrokimia menunjukkan kekonduksian optimum pada penambahan 25% bt garam LiBF4, dengan nilai kekonduksian ion, 1.49¥10-9 S.cm-1 pada suhu bilik. Pemerhatian struktur dan morfologi dijalankan dengan menggunakan analisis pembelauan sinar-X dan mikroskopi imbasan elektron. Hasil menunjukkan pengkompleksan dan penghabluran berlaku dalam sistem polimer elektrolit. Hal ini menyebabkan nilai kekonduksian elektrik yang rendah didapati walaupun telah mencapai tahap optimum penambahan garam LiBF4.

 

Kata kunci: 49% poli(metil metakrilat) cangkukan getah asli; litium tetrafluoroborate; elektrolit pepejal polimer

 

ABSTRACT

 

The potential of 49% poly(methyl methacrylate) grafted natural rubber (MG49) as a solid polymer electrolyte film for application in electrochemical device system has been investigated. The MG49 films with LiBF4 as a doping salt were prepared by solution casting technique. The ionic conductivity investigated by electrochemical impedance spectroscopy showed the optimum ionic conductivity was given by 25 wt% of LiBF4 salt loading with ionic conductivity value, 1.49¥10-9 S.cm-1 at room temperature. The observation on structural and morphology studies have been done by X-ray diffraction and scanning electron microscopy. Results showed that complexation and crystallization occurred in polymer electrolyte system. This gave low electrical conductivity value eventhough the addition of LiBF4 salt has reached the optimum level.

Keywords: 49% poly(methyl methacrylate)–grafted natural rubber (MG49); lithium tetrafluoroborate; solid polymer electrolyte

 

RUJUKAN

 

Ahmad, A., Rahman, M.Y.A. & Ali, M.L.M. 2007. Solid Polymeric Electrolyte of PVC-ENR-LiClO4. Ionics 13: 67-70.

Ali, A.M.M., Yahya, M.Z.A., Bahron, H. & Subban, R.H.Y. 2006. Electrochemical Studies on Polymer Electrolytes Based on Poly(Methyl Methacrylate)-Grafted Natural Rubber for Lithium Polymer Battery. Ionics 12: 303-307.

Ali, A.M.M., Subban, R.H.Y., Bahron, H., Winie, T., Latif, F. & Yahya, M.Z.A. 2008. Grafted Natural Rubber-Based Polymer Electrolytes, ATR-FTIRand Conductivity Studies. Ionics 14: 491-500.

Alias, Y., Ling, I. & Kumutha, K. 2005. Structural and Electrochemical Characteristics of 49% PMMA Grafted Polyisoprene (MG49)-LiCF3SO3-PC Based Polymer Electrolytes. Ionics 11: 414.

Andreev, Y.G. & Bruce, P.G. 2000. Polymer Electrolyte Structure and its Implications. Journal of Electrochimica Acta 45: 1417-1423.

Chee Lip Chew. 2005. Kajian Kekonduksian Ionik Terhadap Adunan Elektrolit Polimer PVC-Getah Asli Terepoksida dan PVDF-Getah Asli Terepoksida. Tesis Sarjana, Universiti Teknologi Malaysia.

Cho, M., Seo, H., Nam, J., Choi, Koo, J. & Lee, Y. 2007. High Ionic Conductivity and Mechanical Strength of SPE Based on NBR/Liquid and its Application to an Electrochemical Actuator. Journal of Sensors and Actuators B 128: 70-74.

Christy, R.W. 1960. Materials. Dlm. Thermoelectric Materials and Devices, Cadoff, I.B. & Miller, E. (pnyt.). Hlm. 174-175. New York: Reinhold Publishing.

Elizabeth, R.N., Kalyanasundaram, S., Gopalan, A., Saito, Y. & Stephen, A.M. 2004. Preparation and Characterisation of PVC/PMMA Blend Polymer Electrolytes Complexed with LiN(C2F5SO2)2. Journal of Polimeros: Ciencie e Tecnologia 14: 1-7.

Famiza Latif. 2006. Preparation and Characterization of PMMA/ENR50 based Solid Electrolytes for Lithium-Ion Secondary Battery. Tesis Ph.D. Universiti Teknologi Malaysia.

Fenton, E., Parker, J.M. & Wright, P.V. 1973. Complexes of Alkali Metal Ions with PEO. Journal of Polymer 14: 589.

Fried, J.R. 2003. Polymer Science and Technology. Ed. ke-2. Portland: Prentice Hall. Hlm 524.

Gray, F.M. 1997. Polymer Electrolytes. London: RSC Material Monographs.

Idris, R., Glasse, M.D., Latham, R.J., Linford, G. & Schlindwein, W.S. 2000. Polymer Electrolytes Based on Modified Natural Rubber for use in Rechargeable Lithium Batteries. Journal of Power Sources 94: 206-211.

Kamuta, K. Alias, & Said, R. 2005. FTIRand Thermal Studies of Modified Natural Rubber Based SPE. Ionics 11: 472-476.

amuta, & Alias, 2006. FTIRSpectra of Plasticized Grafted Natural Rubber-LiCF3SO3 Electrolytes. Journal of Spectrochimica Acta Part A 64: 442-447.

im, C., Lee, G., Liou, Ryu, S., Kang, S.G. & Chang. S.H. 1999. Polymer Electrolytes Prepared by Polymerizing Mixtures of Polymerizable PEO-Oligomers, Copolymer of PVDC and PAN, and LiCF3SO3. Solid State Ionics 123: 251-257.

umar, B., Rodrigues, J.S. & Koka, S. 2002. The crystalline to amorphous transition in PEO-based Composite Electrolytes: Role of Lithium Salts. Journal of Electrochimica Acta 47: 4125-4231.

Li, W., Yang, M., Yuan, M., Tang, & Zhang, J.Q. 2007. Dual-Phase Polymer Electrolytes Based on Blending Poly(MMA-g-NBR) and PMMA. Journal of Applied Polymer Science 106: 3084-3090.

Monikowska, E.Z., Florajnmezyk, Z., Jonska, E.R., Werbanowska, A., Tomaszewska, A., Langwald, N., Golodnitsky, D., Peled, E., Korvarsky, R., Chung, S.H. & Greenbaum, S.G. 2007. Lithium ion Transport of Solid Electrolytes Based on PEO/CF3SO3Li and Aluminum Carboxylate. Journal of Power Source 173: 734-742.

Rajendran, S., Babu, R.S. & Sivakumar, P. 2007. Effect of Salt Concentration on Poly (Vinyl Chloride)-Poly(Acrylonitrile) Based Hybrid Polymer Electrolytes. Journal of Power Sources 170: 460-464.

Rajendran, S., Mahendran, O. & Kannan, R. 2002a. Characterisation of [(1-x)PMMA-xPVdF] Polymer Blend Electrolyte with Li+ ion. J. Fuel 81: 1077-1081.

Rajendran, S., Mahendran, O. & Kannan, R. 2002b. Ionic Conductivity Studies in Composite Solid polymer electrolyte Based on PMMA. Journal of Physics and Chemistry of Solid 63: 303-307.

icket, H. 1973. Dlm Fast Ion Transport In Solids, Solid State Batteries and Devices, edited by Van Gool, W. Amsterdam: North-Holland Publisher. Hlm 1-17.

Su'ait, M.S., Ahmad, A., Hamzah, H. & Yusri, M.Y. A. 2009. Preparation and Characterization of PMMA-MG49-LiClO4 Solid Polymeric Electrolyte. Journal of Physics D: Applied Physics 42 (in press).

Such, K., Florianczyk, Z., Wieczorek, W. & Przyluski, J. 1989. SPE Based on PEO-PMMA Blends and Ethylene Oxide Copolymers. In. International Symposium on Polymer Electrolytes. 2nd edited by Scrosat. B. (pnyt.). 119-127.

Tang, Wang, J., Chen, Q., He, W., Shen, C., Mao, X. & Zhang, J. 2007. A Novel PEO-Based Composite Polymer Electrolyte with Absorptive Glass Mat for Li-ion Batteries. Journal of Electrochimica Acta 52: 6637-6643.

Uma, T., Mahalingam, Rajendran, S. & Stimming, U. 2003. Structural and Ionic Conductivity Studies of SPE Based on PVC and PMMA Blends. Ionics 9: 274-281.

Wang, H.X., Z. X., Li, H., Meng, Q.B. & Chen, L.Q. 2006. Ion Transport in Small-Molecule Electrolytes Based on LiI/3-Hydroxypropionitrile with High Salt Contents. Journal of Electrochimica Acta 52: 2039-2044.

hang, Wha-Tzong., Li-Huy. & Fan, Yu-Wen. 1994. Effect of Poly(Vinylidene Fluoride) on the Conductivity and Morphology of PEO-salt Polymer Electrolytes. Journal of Applied Polymer Science 54: 923-933.

ickham, J.R., Mason, R.N. & Rice, C.V. 2007. Solid-State NMRStudies of the Crystalline and Amorphous Domains within PEO and PEO: LiTf Systems. Journal of Solid State Nuclear Magnetic Resonance 31: 184-192.

 

*Corresponding author; email: azizan@ukm.my

 

 

 

 

 

 

previous