Sains Malaysiana 41(5)(2012): 603–609

 

Chemically Modified Multi-walled Carbon Nanotubes (MWCNTs) with

Anchored Acidic Groups

(Pengubahsuaian Secara Kimia ke atas Nanotiub Karbon denganMulti-berdinding

Menggabungkan Kumpulan Berasid)

 

Nuruzatulifah Bt Asari @ Mansor* , M.G. Kutty & S.B. Abd Hamid

Combinatorial Technology and Catalysis Research Centre (COMBICAT), Universiti Malaya

50603 Kuala Lumpur, Malaysia

 

Jean-Philippe Tessonnier , Ali Rinaldi , Sylvia Reiche & Robert Schlögl

Fritz Haber Institute of Max Planck Society, Faradayweg 4-6, D-14195 Berlin, Germany

 

Received: 25 April 2011 / Accepted: 18 November 2011

 

 

ABSTRACT

Surface functionalization of multi-walled carbon nanotubes (MWCNTs) was carried out using a gas phase treatment in a Universal Temperature Program (UTP) reactor by flowing SO3 gas onto the CNTs while being heated at different temperatures. The functionalized nanotubes were characterized using X-ray Fluorescence (XRF), Fourier Transform Infrared Spectroscopy (FT-IR) and Raman spectroscopy. The amount of oxyen and sulfur containing groups was determined by acid-base titration. The titration results were in good agreement with elemental analysis using x-ray fluorescence. FTIR analysis showed the presence of oxygen and sulfur containing groups, S=O, C-S, C=O and -COOH. Raman spectroscopy confirmed that oxygen and sulfur containing acidic groups covalently attached to the sidewall of the MWCNTs.

 

Keywords: Carbon nanotubes; characterization; functionalization; sulphur-based surface

 

 

ABSTRAK

 

Fungsionalisasi permukaan nanotiub karbon multi-berdinding (MWCNTs) dilakukan dengan menggunakan rawatan fasa gas dalam reaktor Universal Temperature Program (UTP) dengan mengalirkan gas SO3 ke dalam MWCNT sambil dipanaskan pada suhu yang berbeza. Nanotiub karbon yang difungsikan dianalisis menggunakan pendaflour sinar-X (XRF), spektroskopi inframerah penjelmaan fourier (FT-IR) dan spektroskopi Raman. Jumlah oksigen dan kumpulan yang mengandungi sulfur ditentukan dengan titrasi asid-alkali. Keputusan titrasi berkesesuaian dengan analisis unsur menggunakan XRF. Analisis FTIR menunjukkan adanya oksigen dan kumpulan yang mengandungi sulfur, S=O, C-S, C = O dan-COOH. Spektroskopi Raman mengesahkan bahawa oksigen dan sulfur adalah kumpulan asid yang diikat secara kovalen pada dinding permukaan MWCNTs.

 

Kata kunci: Ciri; fungsionalisasi; permukaan asas sulfur; nanotiub karbon

REFERENCES

Barkauskas, J. & Dervintyl, M. 2004. An investigation of the functional groups on the surface of activated carbon. Journal of Serbia of Chemical Society 69: 363 – 375.

Clark, A. 1974. The Chemisorptive Bond. New York & London: Academic Press.

Dresselhaus, M.S., Rao, A.M. & Dresselhaus, G. 2004. Raman Spectroscopy in carbon nanotubes. Encyclopedia of Nanoscience and Nanotechnology 9: 307- 338.

Haris, P.J.F. 2009. Carbon Nanotube Science; Synthesis, Properties and Application. UK: Cambridge University Press.

Jeong, Y., Kim, J. & Lee, G.W. 2010. Optimizing functionalization of multiwalled carbon nanotubes using sodium lignosulfonate. Colloid Polymer Science 288: 1 – 6.

Ma, C., Zhang, W., Zhu, Y., Ji, L., Zhang, R., Koratkar, N. & Liang, J. 2008. Alignment and dispersion of functionalized carbon nanotubes in polymer composites induced by an electric field. Carbon 46: 706-720.

Murakami, K., Kondo, R., Fuda, K. & Matsunaga, T. 2003. Acidity distribution of carboxyl groups in Loy Yang brown coal: its analysis and change by heat treatment. Journal of Colloid and Interface Science 260: 176-183.

Naseh, M.V., Khodadadi, A.A., Mortazavi, Y., Sahraei, O.A., Pourfayaz, F. & Sedghi, S. M. 2009. Functionalization of carbon nanotubes using nitric oxidation and DBD plasma. World Academy of Science Engineering and Technology19: 177 – 179.

Nyouist, R.A. 2001. Interpretating Infrared, Raman and Nuclear Magnetic Resonance Spectra : Variables in Data Interpretation of Infrared and Raman Spectra. New York: Academic Press.

Owens, F.J. & Poole, C.P. 2008. The Physics and Chemistry of Nanosolids. USA: John Wiley & Sons, Inc.

Puziy, A.M., Poddubnaya, O.I., Ritter, J.A., Ebner, A.D. & Holland, C.E. 2001. Elucidation of the ion binding mechanism in heterogeneous carbon-composite adsorbents. Carbon 39: 2313 – 2324.

Silverstein, R.M. & Bassler, G.C. 1991. Spectroscopic Identification of Organic Compound. Los Altos California: John Wiley & Son, Inc.

Serp, P. & Figueiredo, J.L. 2009. Carbon Material for Catalysis. New Jersey: John Wiley & Sons. Inc.

Tessonnier, J.P., Rosenthal, D., Hansen, T.W., Hess, C., Schuster, M.E., Blume, R., Pfander , N., Timpe, O., Su, D.S. & Scheog, R. l. 2009. Analysis of the structure and chemical properties of some commercial carbon nanostructures. Carbon 47: 1779-1798.

Wang, Y., Duan, Y., Yang L., Zhao, C., Shen, X., Zhang, M., Zhuo, Y. & Chen, C. 2009. Experimental study on mercury transformation and removal in coal-fired boiler flue gasses. Fuel Processing Technology 90: 643-651.

Wang, Z., M. Shirley, D., Meikle, S. T., Whitby, R. L. D. & Mikhalovsky S.V. 2009. The surface of acid oxidized multi-walled carbon nanotubes and the influenced of in-siitu generated fulvic acid on their stability in aqueous dispersions. Carbon 47 : 73-79.

Yu, H., Jin, Y., Li, Z., Peng, F.& Wang, H. 2008. Synthesis and characterization of sulfonated single –walled carbon nanotubes and their performance as solid acid catalyst. Journal of solid State Chemistry 181: 432 – 438.

Zhang, X., Yang, D. Xu, P., Wang, C. & Du, Q. 2007. Characterizing the surface properties of carbon nanotubes by inverse gas chromatography. Journal Material Science 42: 7069-7075.

 

 

*Corresponding author; email: nuruz@siswa.um.edu.my

 

 

 

previous