Sains Malaysiana 41(9)(2012): 1139–1148

 

 

Investigation of Heat Mass Transfer for Combined Convective Slips Flow: A Lie

Group Analysis

(Kajian Pemindahan Haba dan Jisim Bagi Aliran Berolak Gabungan Gelincir: Analisis

Kumpulan Lie)

 

 

Md. Jashim Uddin1,*, M. M.Hamad2 & A.I. Md. Ismail1

1School of Mathematical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia

2Mathematics Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt

Received: 17 November 2011 / Accepted: 21 May 2012

 

 

ABSTRACT

The steady laminar combined convective flow with heat and mass transfer of a Newtonian viscous incompressible fluid over a permeable flat plate with linear hydrodynamic and thermal slips has been investigated numerically. The velocity of the external flow, the suction/injection velocity and the temperature of the plate surface are assumed to vary nonlinearly following the power law with the distance along the plate from the origin. Lie group analysis is used to develop the similarity transformations and the governing momentum, the energy conservation and the mass conservation equations are converted to a system of coupled nonlinear ordinary differential equations with the associated boundary conditions. The resulting equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order numerical method. The effects of hydrodynamic slip parameter (a), thermal slip parameter (b), suction/injection parameter (fw), power law parameter (m), buoyancy ratio parameter (N), Prandtl number (Pr) and Schmidt number (Sc) on the fluid flow, heat transfer and mass transfer characteristics are investigated and presented graphically. We have also shown the effects of the Reynolds number (Re) and the power law parameter (m) on the velocity slip and the thermal slip factors. Good agreement is found between the numerical results of the present paper and published results.

 

Keywords: Combined convective flow; heat and mass transfer; hydrodynamic and thermal slip; Lie group

 

 

ABSTRAK

Aliran berolak tergabung yang mantap dan berlamina dengan pemindahan haba dan jisim bagi suatu bendalir Newtonan likat tak mampat ke atas plat rata yang telap dengan gelinciran linear hidrodinamik dan haba dikaji secara berangka. Halaju aliran luar, halaju sedutan/semburan dan suhu permukaan plat diandaikan berubah terhadap jarak sepanjang plat dari asalan secara tak linear mengikut hukum kuasa. Analisis Kumpulan Lie digunakan untuk memperoleh penjelmaan keserupaan dan persamaan momentum, keabadian tenaga dan keabadian jisim ditukar kepada sistem persamaan pembezaan biasa tak linear dengan syarat sempadan yang sepadan. Persamaan yang terhasil diselesaikan menggunakan kaedah berangka Runge-Kutta-Fehlberg peringkat keempat-kelima. Kesan parameter gelincir halaju a, parameter gelincir haba b, parameter sedutan/semburan (fw), parameter hukum kuasa m, parameter keapungan N, nombor Prandtl (Pr) dan nombor Schmidt (Sc) terhadap aliran bendalir, pemindahan haba dan pemindahan jisim dikaji dan dibentangkan secara bergraf. Kami juga mempamerkan kesan nombor Reynolds Re dan parameter hukum kuasa (m) ke atas faktor gelincir halaju dan faktor gelincir haba. Keputusan berangka dalam makalah ini didapati menepati keputusan yang telah diperoleh dalam penerbitan sebelum ini.

 

Kata kunci: Gelincir hidrodinamik dan haba; kumpulan Lie; olakan campuran; pemindahan haba dan jisim gabungan

 

REFERENCES

Abbas, Z. & Hayat, T. 2009. Stagnation slip flow and heat transfer over a nonlinear stretching sheet. Numerical Methods for Partial differential Equations 27(2): 302-314.

Ali, F.M., Nazar, R., Arifin, N.M. & Pop, I. 2011. MHD mixed convection boundary layer flow toward a stagnation point on a vertical surface with induced magnetic field. Journal of Heat Transfer 133: 022502-8.

Anderson, H.I. 2002. Slip flow past a stretching surface. Acta Mechanica 158: 121-125.

Ayd?n, O. & Kaya, A. 2007. Mixed convection of a viscous dissipating fluid about a vertical flat plate. Applied Mathematical Modelling 31: 843-853.

Aziz, A. 2009. A similarity solution for laminar thermal boundary over a flat plate with a convective boundary condition. Communications in Nonlinear Science and Numerical Simulations 15: 1064-1068.

Aziz, A. 2010. Hydrodynamic and thermal slip flow boundary layers over a flat plate with constant heat flux boundary condition. Communications in Nonlinear Science and Numerical Simulations 15: 573-580.

Cao, K. & Baker. J. 2009. Slip effects on mixed convective flow and heat transfer from a vertical plate. International Journal of Heat and Mass Transfer 52: 3829-3841.

Deswita, L., Nazar, R., Ishak, A., Ahmad, R. & Pop, I. 2010. Mixed convection boundary layer flow past a wedge with permeable walls. Heat Mass Transfer 46: 1013-1018.

Devi, C.D.S., Takhar, H.S. & Nath, G. 1991. Unsteady mixed convection flow in stagnation region adjacent to a vertical surface. Heat Mass Transfer 26: 71-79.

Fang, T. & Lee, C.F., 2005. A moving wall boundary layer flow of a slightly rarefied gas free stream over a moving flat plate. Applied Mathematics Letter 18: 487-95.

Fang, T., Zhang, J. & Yao, S. 2009. Slip MHD viscous flow over a stretching sheet a exact solution. Communications in Nonlinear Science and Numerical Simulation 14: 3731-3737.

Hak, G.M. 2002. In Flow Physics in the MEMS Handbook, edited by Gad-el-Hah, M. Boca Raton, FL: CRC Press.

Hamad, M.A.A., Uddin, M.J. & Ismail, A.I.M. 2012. Investigation of combined heat and mass transfer by Lie group analysis with variable diffusivity taking into account hydrodynamic slip and thermal convective boundary conditions, International Journal of Heat and Mass Transfer 55: 1355-62.

Hassanien, I.A. & Gorla, R.S.R. 1990. Combined forced and free convection in stagnation flows of micropolar fluids over vertical non-isothermal surfaces. International Journal of Engineering Science 28: 783-792.

Ibrahim, F.S, Mansour, M.A. & Hamad, M.A.A., 2007. Similarity solution of laminar flow due to a rotating frustum of a cone. Journal of the Egyptian Mathematical Society 15: 233-245.

Incropera, Dewitt, Bergman & Lavine. 2007. Fundamentals of Heat and Mass Transfer. (6th ed). New York: John Wiley.

Ishak, A., Nazar, R., Bachok, N. & Pop, I. 2010. MHD mixed convection flow near the stagnation-point on a vertical permeable surface. Physica A 389: 40-46.

Jalil, M., Asghar, S. & Mushtaq, M. 2010. Lie group analysis of mixed convection flow with mass transfer over a stretching surface with suction or injection. Mathematical Problems in Engineering 2010: 264901-16.

Lai, F.C. 1991. Couple heat and mass transfer by mixed convection from a vertical plate in a saturated porous media. International Communication Heat Mass Transfer 18: 93-106.

Lok, Y.Y., Amin, N., Campean, D. & Pop, I., 2005. Steady mixed convection flow of a micropolar fluid near the stagnation point on a vertical surface. International Journal of Numerical Methods for Heat Fluid Flow 15: 654-670.

Lloyd, J.R. & Sparrow, E.M. 1970. Combined forced and free convection flow on vertical surfaces, International Journal of Heat Mass Transfer 13: 434-438.

Mahmoud, M.A.A. 2010. Flow and heat transfer of a slightly rarefied gas over a stretching surface. Meccanica 45: 911-916.

Martin, M.J. & Boyd I.D. 2009. Falkner-Skan flow over a wedge with slip boundary conditions. 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, 5-8 January, Orlando, Florida.Martin, M.J. & Boyd, I.D. 2010. Falkner-Skan flow over a wedge with slip boundary conditions. AIAA Journal of Thermo Physics and Heat Transfer 24(2): 263-270.

Mattews, M.T. & Hill, J.M. 2007. Micro/nano thermal boundary layer equations with slip–creep–jump boundary conditions. IMA Journal of Applied Mathematics 72: 894-911.

Moulic, G.S. & Yao, L.S. 1989. Mixed convection along a wavy surface. Journal of Heat Transfer 111(4): 974-979.

Moulic, G.S. & Yao, L.S., 2009. Mixed convection along a semi-Infinite vertical flat plate with uniform surface heat flux. Journal of Heat Transfer 131(2): 022502-1-8.

Mukhopadhyay, S. & Anderson, H.I. 2009. Effects of slip and heat transfer analysis of flow over an unsteady stretching surface. Heat Mass Transfer 45: 1447-1452.

Pandey, M., Pandey, B.D. & Sharma, V.D. 2009. Symmetry groups and similarity solutions for the system of equations for a viscous compressible fluid. Applied Mathematics and Computation 215: 681-685.

Rahman, M.M. 2010. Locally similar solutions for hydromagnetic and thermal slip flow boundary layers over a flat plate with variable fluid properties and convective surface boundary condition. Meccanica DOI 10.1007/s11012-010-9372-2.

Ramachandran, N. Chen, T.S. & Armaly, B.F. 1988. Mixed convection in stagnation flows adjacent to a vertical surfaces. ASME Journal of Heat Transfer 110: 373-377.

Sahoo, B. 2010. Flow and heat transfer of a non-Newtonian fluid past a stretching sheet with partial slip. Communications in Nonlinear Science and Numerical Simulations 15: 602-615.

Sengupta, T.K., Unnikrishnan, S., Bhaumik, S., Singh, P. & Usman, S. 2011. Linear spatial stability analysis of mixed convection boundary layer over a heated plate. Progress in Applied Mathematics 1: 71-89.

Singh, N.P., Singh, A.K., Singh, A.K. & Agnihotri, P. 2011. Effects of thermophoresis on hydromagnetic mixed convection and mass transfer flow past a vertical permeable plate with variable suction and thermal radiation. Communications in Nonlinear Science and Numerical Simulation 16: 2519-2534

Subhashini, S.V., Samuel, N. & Pop, I. 2011. Effects of buoyancy assisting and opposing flows on mixed convection boundary layer flow over a permeable vertical surface. International Communications in Heat and Mass Transfer 38: 499-503

Wang, C.Y. 2009. Analysis of viscous flow due to stretching sheet with surface slip and suction. Nonlinear Analysis and Real World Applications 10: 375-80.

White, R.E. & Subramanian, V.R. 2010. Computational Methods in Chemical Engineering with Maple. N.Y: Springer

Wilks, G. 1973. Combined forced and free convection flow on vertical surfaces. International Journal of Heat Mass Transfer 16: 1958-1964.

Yao, L.S. 1987. Two-Dimensional mixed convection along a flat plate. Journal of Heat Transfer 109: 440-445.

 

 

*Corresponding author; email: jasihim_74@yahoo.com

 

 

 

previous