Sains Malaysiana 42(11)(2013): 1549–1555

 

Synergistic and Antagonistic Effects of Zinc Bioaccumulation with Lead and

Antioxidant Activities in Centella asiatica

(Kesan Sinergistik dan Antagonistik oleh Bioakumulasi Zinkdengan Plumbum dan

Aktiviti Antioksidan di Centella asiatica)

 

 

G.H. ONG1, C.K. YAP1*, M. MAZIAH2 & S.G. TAN3

 

1Department of Biology, Faculty of Science, Universiti Putra Malaysia

43400 UPM, Serdang, Selangor, Malaysia

 

2Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences

Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia

 

3Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences

Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia

 

Received: 13 June 2012 /Accepted: 9 April 2013

 

ABSTRACT

This study was carried out by using Centella asiatica grown using a hydroponic system under laboratory conditions to study synergistic and antagonistic effects of Zn bioaccumulation with added Pb and the changes in antioxidant activities in leaves and roots of C. asiatica. The antioxidant activities included superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and guaiacol peroxidase (GPX). The treatments Zn (2 ppm) + Pb (0.4 ppm) and Zn (4 ppm) + Pb (0.6 ppm) increased the accumulation of Zn in leaves by 14.06  and 16.84%, respectively, but decreased by 7.36% uptake in roots (Zn 4 ppm + Pb 0.6 ppm). This showed that Pb and Zn acted synergistically to Zn accumulation in leaves but antagonistically in roots. CAT and SOD activities in leaves were increased when Zn was added together with Pb. In roots, CAT, APX and SOD activities were increased but GPX was decreased. Owing to their sensitivities to Zn with Pb, SOD and CAT could be used as biomarkers to monitor the toxicity of Pb and Zn exposure in the leaves and roots of C. asiatica.

 

Keywords: Antagonistic; antioxidant activities; Centella asiatica; synergistic

 

ABSTRAK

Kajian ini telah dijalankan dengan Centella asiatica secara hidroponik dalam keadaan makmal untuk mengkaji kesan sinergistik dan antagonistik bioakumulasi Zn ditambah dengan Pb dan perubahan dalam aktiviti antioksidan dalam daun dan akar C. asiatica. Aktiviti antioksidan termasuk superokside dimustase (SOD), katalase (CAT), peroksidase askorbat (APX) dan peroksidase guaiacol (GPX). Rawatan Zn (2 ppm) + Pb (0.4 ppm) dan Zn (4 ppm) + Pb (0.6 ppm) menunjukkan pengumpulan Zn dalam daun sebanyak 14.06  dan 16.84% masing-masing tetapi menurun sebanyak 7.36% dalam pengambilan akar (Zn 4 ppm + Pb 0.6 ppm). Ini menunjukkan bahawa Pb dan Zn bertindak secara sinergistik untuk pengumpulan Zn dalam daun tetapi antogonistik dalam akar. Aktiviti CAT dan SOD dalam daun meningkat apabila Zn ditambah bersama dengan Pb. Dalam akar, CAT, APX dan SOD telah meningkat tetapi GPX telah menurun. Disebabkan sentiviti kepada Zn dengan Pb, SOD dan CAT boleh digunakan sebagai penanda biologi untuk memantau ketoksikan pendedah Pb dan Zn dalam daun dan akar C. asiatica.

 

Kata kunci: Aktiviti antioksidan; antagonistik; Centella asiatica; sinergistik

 

REFERENCES

 

Aebi, H. 1984. Catalase in vitro. Methods Enzymol. 105: 121-126.

Aery, N.C. & Rana, D.K. 2007. Interactive effects of Zn, Pb and Cd in barley. J. Environ. Sci. Eng. 49(1): 71-76.

An, Y.J., Kim, Y.M., Kwon, T.I. & Jeong, S.W. 2004. Combined effect of copper, cadmium, and lead upon Cucumis sativus growth and bioaccumulation. Sci. Total Environ. 326: 85-93.

Beauchamp, C. & Fridovich, I. 1971. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44: 276-287.

Blaylock, M.J. & Huang, J.W. 1999. Phytoextraction of metals. In Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment, edited by Raskin, I. & Ensley, B.D. New York: John Wiley & Sons Inc. pp. 53-70.

Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.

Brinkhaus, B., Lindner, M., Schuppan, D. & Hahn, E.G. 2000. Review Article: Chemical, pharmacological and clinical profile of the East Asian medical plant Centella asiatica. Phytomedicine 7(5): 427-448.

Broadley, M.R., White, P.J., Hammond, J.P., Zelko, I. & Lux, A. 2007. 'Zinc in plants'. New Phytologist 173(4): 677-702.

Clemens, S., Palmgren, M.G. & Kramer, U. 2002. A long way ahead: Understanding and engineering plant metal accumulation. Trends Plant Sci. 7: 309-315.

Cobbett, C.S. 2000. Phytochelatins and their roles in heavy metal detoxification. Plant Physiol. 123: 825-832.

de Abreu, C.A., de Abreu, M.F. & de Andrade, J.C. 1998. Distribution of lead in the soil profile evaluated by DTPA and Mehlich-3 solutions. Bragantia. 57: 185-192.

Eick, M.J., Peak, J.D., Brady, P.V. & Pesek, J.D. 1999. Kinetics of lead adsorption and desorption on goethite: Residence time effect. Soil Sci. 164: 28-39.

Foyer, C.H. & Noctor, G. 2005. Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. The Plant Cell. 17(7): 1866-1872.

Foyer, C.H., Noctor, G., Buchanan, B., Dietz, K.J. & Pfannschmidt, T. 2009. Redox regulation in photosynthetic organisms: Signaling, acclimation and practical implications. Antioxid. Redox. Signal. 11(4): 861-905.

Hemeda, H.M. & Klein, B.P. 1990. Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. J. Food Sci. 55: 184-185.

Israr, M., Jewell, A., Kumar, D., Shivendra, V. & Sahi, S.V. 2011. Interactive effects of lead, copper, nickel and zinc on growth, metal uptake and antioxidative metabolism of Sesbania drummondii. J. Hazard Mater. 186: 1520-1526.

Kopittke, P.M., Blamey, F.P.C., Asher, C.J. & Menzies, N.W. 2010. Trace metal phytotoxicity in solution culture: A review. J. Exp. Bot. 61(4): 945-954.

Kuk, Y.I., Shin, J.S., Burgos, N.R., Hwang, T.E., Han, O., Cho, B.H., Jung, S. & Guh, J.O. 2003. Antioxidative enzymes offer protection from chilling damage in rice plants. Crop Sci. 43: 2109-2117.

Lichtenthaler, H.K. 1998. The stress concept in plants: An introduction. Ann. NY. Acad. Sci. 851: 187-198.

Meers, E., Vandecasteele, B., Ruttens, A., Vangronsveld, J. & Tack, F.M.G. 2007. Potential of five willow species (Salix spp.) for phytoextraction of heavy metals.nviron. Exp. Bot. 60: 57-68.

Miransari, M. 2011. Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol. Adv. 29(6):645- 653.

Mishra, S., Srivastava, S., Tripathi, R.D., Govindarajan, R., Kuriakose, S.V. & Prasad, M.N.V. 2006. Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol. Biochem. 44: 25-37.

Mittler, R., Vanderauwera, S., Gollery, M. & Breusegem, F.V. 2004. Abiotic stress series. Reactive oxygen gene network of plants. Trends Plant Sci. 9(10): 490-498.

Nakano, Y. & Asada, K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22: 867-880.

Neill, S.J., Desikan, R., Clarke, A., Hurst, R.D. & Hancock, J.T. 2002. Hydrogen peroxide and nitric oxide as signalling molecules in plants. J. Exp. Bot. 53: 1237-1247.

Parra-Lobato, M.C., Fernandez-Garcia, N., Olmos, E., Alvarez- Tinaut, M.C. & Gomez- Jimenez, M.C. 2009. Methyl jasmonate-induced antioxidant defence in root apoplast from sunflower seedlings. Environ. Exp. Bot. 66(1): 9-17.

Peng, H.Y., Tian, S.K. & Yang, X.E. 2005. Changes of root morphology and Pb uptake by two species of Elsholtzia under Pb toxicity. J. Zhejiang Univ. Sci. B. 6(6): 546-552.

Rout, G.R. & Das, P. 2009. Effect of metal toxicity on plant growth and metabolism: I. zinc. Sustainable Agriculture 7: 873-884.

Sarvajeet, S.G. & Narendra, T. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochemistr. 48: 909-930.

Schützendübel, A. & Polle, A. 2002. Plant responses to abiotic stresses: Heavy metal-induced oxidative stress and protection by mycorrhization. J. Exp. Bot. 53(372): 1351-1365.

Sharma, P. & Dubey, R.S. 2005. Lead toxicity in plants. Braz. J. Plant Physiol. 17(1): 35-52.

Sharma, P., Jha, A.B., Dubey, R.S. & Pessarakli, M. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal  of Botany doi: 10.1155/2012/217037.

Singh, J., Upadhyay, A.K., Bahadur, A., Singh, B., Singh, K.P. & Rai, M. 2006. Antioxidant phytochemicals in cabbage (Brassica oleracea L. var. capitata). Sci. Hortic. 108: 233- 237.

Singh, S. & Sinha, S. 2005. Accumulation of metals and its effect in Brassica juncea L. Czern. (var. rohini) grown on various amendments of tannery waste. Ecotoxicol. Environ. Saf. 62: 122-127.

Sinha, P., Dube, B.K., Srivastava, P. & Chatterjee, C. 2006. Alteration in uptake and translocation of essential nutrients in cabbage by excess lead. Chemosphere 65(4): 651-656.

Soares, C.R.F.S., Accioly, A.M.A., Marques, T.C.L.L.S., Siqueira, J.O. & Moreira, F.M.S. 2001. Accumulation and distribution heavy metals in root, stems and leaves of tree seedlings in soil contaminated by zinc industry wastes. Rev. Bras. Fis. Veg. 13: 302-315.

Starzynska, A., Leza, M. & Mareczek, A. 2003. Physiological changes in the antioxidant system of broccoli flower buds senescence during short term storage, related to temperature and packaging. Plant Sci. 165: 1387-1395.

Street, R.A., Kulkarni, M.G., Stirk, W.A., Southway, C., Abdillahi, H.S., Chinsamy, M. & Van Staden, J. 2009. Effect of cadmium uptake and accumulation on growth and antibacterial activity of Merwilla plumbea- an extensively used medicinal plant in South Africa. S. Afr. J. Bot. 75(3): 611-616.

Stroinski, A. & Kozlowska, M. 1997. Cadmium induced oxidative stress in potato tuber. Acta Soc. Bot. Pol. 66: 189-195.

Tang, Y.T., Qiu, R.L., Zheng, X.W., Ying, R.R., Yu, F.M. & Zhou, Z.Y. 2009. Lead, zinc, cadmium hyperaccumulation and growth stimulation in Arabis paniculata Franch. Environ. Exper. Bot. 66: 126-134.

Verma, S. & Dubey, R.S. 2003. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci. 164: 645-655.

WHO. 1999. Monographs on Selected Medicinal Plants. 1: 77-85.

Wong, M.K., Chuah, G.K., Ang, K.P. & Koh, L.L. 1986. Interactive effects of lead, cadmium and copper combinations in the uptake of metals and growth of Brassica chinensis. Environ. Exper. Bot. 26(4): 331-339.

Wu, Y., Wang, X., Li, Y. & Ma, Y. 1995. Compound pollution of Cd, Pb, Cu, Zn and As in plant soil system and its prevention. J. Environ. Sci. 8(4): 474-482.

Yan, C., Li, G., Xue, P., Wei, Q. & Li, Q. 2010. Competitive effect of Cu (II) and Zn(II) on the biosorption of lead(II) by Myriophyllum spicatum. J. Hazard Mater. 179: 721-728.

Yang, X., Long, X.X., Ni, W.Z. & Fu, C.X. 2002. Sedum alfredii H: A new Zn hyperaccumulating plant first found in China. Chin. Sci. Bull. 47: 1634-1637.

Yap, C.K., Mohd Fitri, M.R., Mazyhar, Y. & Tan, S.G. 2010. Effect of metal-contaminated soils on the accumulation of heavy metal in different parts of Centella asiatica: A laboratoty study. Sains Malaysiana 39: 347-352.

Zar, J.H. 1996. Biostatistical Analysis. 3rd ed. New Jersey: Prentice Hall.

Zheljazkov, V.D., Craker, L.E. & Xing, B. 2006. Effects of Cd, Pb, and Cu on growth and essential oil contents in dill, peppermint, and basil. Envrion. Exp. Bot. 58: 9-16.


*Corresponding author; email: yapckong@hotmail.com