Sains Malaysiana 42(12)(2013): 1799–1803

 

Casimir Force Control with Optical Kerr Effect

(Kawalan Daya Casimir dengan Kesan Optik Kerr)

 

Y.Y. KHOO & C.H. RAYMOND OOI*

Department of Physics, University of Malaya, 50603 Kuala Lumpur, Malaysia

 

Received: 19 November 2012/Accepted: 1 April 2013

 

ABSTRACT

The control of the Casimir force between two parallel plates can be achieved through inducing the optical Kerr effect of a nonlinear material. By considering a two-plate system which consists of a dispersive metamaterial and a nonlinear material, we show that the Casimir force between the plates can be switched between attractive and repulsive Casimir force by varying the intensity of a laser pulse. The switching sensitivity increases as the separation between plate decreases, thus providing new possibilities of controlling Casimir force for nanoelectromechanical systems.

 

Keywords: Casimir effect; optical kerr effect (OKE)

 

ABSTRAK

Kawalan daya Casimir antara dua plat selari boleh dicapai dengan mencetuskan kesan optik Kerr dalam suatu bahan tak linear. Dengan mempertimbangkan suatu sistem dua-plat yang terdiri daripada satu plat metamaterial dengan satu bahan tak linear, kami menunjukkan bahawa daya Casimir antara plat-plat tersebut boleh ditukar antara daya tarikan Casimir serta daya tolakan Casimir dengan mengubah keamatan laser. Tahap kesensitifan pertukaran tersebut meningkat apabila jarak pemisah antara plat-plat tersebut dikurangkan, justeru mencetus idea baru untuk mengawal kesan Casimir bagi sistem mekanikal nanoelektrik

 

Kata kunci: Kesan Casimir; kesan optik Kerr

REFERENCES

Bahk, S.W., Rousseau, P., Planchon, T.A., Chvykov, V., Kalintchenko, G., Maksimchuk, A., Mourou, G.A. & Yanovsky, V. 2004. Generation and characterization of the highest laser intensities (1022 W/cm2). Opt. Lett. 29: 2837- 2839.

Boyer, T. 1968. Quantum electromagnetic zero-point energy of a conducting spherical shell and the Casimir model for a charged particle. Phys. Rev. 174(5): 1764-1776.

Canaguier-Durand, A., Neto, P.A.M., Lambrecht, A. & Reynaud, S. 2010. Thermal Casimir effect in the plane-sphere geometry. Phys. Rev. Lett. 104(4): 040403.

Capasso, F., Munday, J.N., Iannuzzi, D. & Chan, H.B. 2007. Casimir forces and quantum electrodynamical torques: Physics and nanomechanics. IEEE. J. Quantum. Electron.13: 400-403.

Casimir, H. 1948. On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet 51: 793-795.

Chan, H.B., Aksyuk, V.A., Kleiman, R.N., Bishop, D.J. & Capasso, F. 2001. Nonlinear micromechanical Casimir oscillator. Phys. Rev. Lett. 87(21): 211801.

Chen, R.P. & Raymond, O.C.H. 2011. Evolution and collapse of a Lorentz beam in Kerr medium. Prog. Electro. Res. 121: 39-52.

De Los Santos, H. 2003. Nanoelectromechanical quantum circuits and systems. Proc. IEEE. 91: 1907-1921.

Kenneth, O., Klich, I., Mann, A. & Revzen, M. 2002. Repulsive Casimir forces. Phys. Rev. Lett. 89(3): 033001.

Kosa, T.I., Rangel-Rojo, R., Hajto, E., Ewen, P.J.S., Owen, A.E., Kar, A.K. & Wherrett, B.S. 1993. Nonlinear optical properties of silver-doped As2S3. J. Non-Cryst. Solids. 164: 1219-1222.

Lambrecht, A. & Marachevsky, V.N. 2008. Casimir interaction of dielectric gratings. Phys. Rev. Lett. 101(16): 160403.

Leonhardt, U. & Philbin, T.G. 2007. Quantum levitation by left-handed metamaterials. New J. Phys. 9: 254.

Levin, M., McCauley, A.P., Rodriguez, A.W., Reid, M.T.H. & Johnson, S.G. 2010. Casimir repulsion between metallic objects in vacuum. Phys. Rev. Lett. 105(9): 090403.

Lezec, H.J., Dionne, J.A. & Atwater, H.A. 2007. Negative refraction at visible frequencies. Science 316: 430-432.

Milton, K.A. 2001. The Casimir Effect: Physical Manifestations of Zero-point Energy. Singapore: World Scientific. pp. 30-36.

Munday, J.N., Capasso, F. & Parsegian, V.A. 2009. Measured long-range repulsive Casimir–Lifshitz forces. Nature 457: 170-173.

Parazzoli, C.G., Greegor, R.B., Li, K., Koltenbah, B.E.C. & Tanielian, M. 2003. Experimental verification and simulation of negative index of refraction using Snell’s Law. Phys. Rev. Lett. 90(10): 107401.

Pendry, J.B., Holden, A.J., Robbins, D.J. & Stewart, W.J. 1999. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory Tech. 47: 2075-2084.

Pendry, J.B., Holden, A.J., Stewart, W.J. & Youngs, I. 1996. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76(25): 4773-4776.

Rahi, S.J., Kardar, M. & Emig, T. 2010. Constraints on stable equilibria with fluctuation-induced (Casimir) forces. Phys. Rev. Lett. 105(7): 070404.

Raymond, O.C.H. & Khoo, Y.Y. 2012. Controlling the repulsive Casimir force with the optical Kerr effect. Phys. Rev. A86(6): 062509.

Rosa, F.S.S., Dalvit, D.A.R. & Milonni, P.W. 2008. Casimir- Lifshitz theory and metamaterials. Phys. Rev. Lett. 100(18): 183602.

Serry, F., Walliser, D. & Maclay, G. 1998. The role of the Casimir effect in the static deflection and stiction of membrane strips in microelectromechanical systems (MEMS). J. Appl. Phys. 84(5): 2501.

Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C. & Schultz, S. 2000. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84(18): 4184-4187.

Weber, A. & Gies, H. 2010. Nonmonotonic thermal Casimir force from geometry-temperature interplay. Phys. Rev. Lett. 105(4): 040403.

Yang, Y., Zeng, R., Chen, H., Zhu, S. & Zubairy, M.S. 2010. Controlling the Casimir force via the electromagnetic properties of materials. Phys. Rev. A 81(2): 022114.

Yang, Y., Zeng, R., Xu, J. & Liu, S. 2008. Casimir force between left-handed-material slabs. Phys. Rev. A 77(1): 015803.

Yannopapas, V. & Vitanov, N.V. 2009. First-principles study of Casimir repulsion in metamaterials. Phys. Rev. Lett. 103(12): 120401.

Zhang, S., Park, Y.S., Li, J., Lu, X., Zhang, W. & Zhang, X. 2009. Negative refractive index in chiral metamaterials. Phys. Rev. Lett. 102(2): 023901.

 

 

*Corresponding author; email: rooi@um.edu.my

 

previous