Sains Malaysiana 42(2)(2013): 205–211

 

Current and Conductance Modulation at Elevated Temperature in Siliconand InAs-based

Spin Field-Effect Transistors

(Modulasi Arus dan Konduktans pada Suhu Tinggi dalam Transistor Silikon

dan InAs Berasaskan Spin Kesan Medan)

 

Dmitri Osintsev*, ViktorSverdlov, AlexanderMakarov & SiegfriedSelberherr

Institute for Microelectronics, TU Wien, Gusshaustr, 27-29, Wien 1040, Austria

 

Received: 7 January 2012 / Accepted: 21 May 2012

 

ABSTRACT

Spin field-effect transistors (SpinFETs) are promising candidates for future integrated microelectronic circuits. A SpinFET is composed of two ferromagnetic contacts (source and drain), which sandwich a semiconductor channel. Current modulation is achieved by electrically tuning the gate voltage dependent strength of the spin-orbit interaction in the semiconductor region. We investigated the properties of SpinFETs for various parameters - the band mismatch, the barrier height between the contacts and the channel and the strength of the spin-orbit coupling, for various temperatures. We demonstrated that the creation of Schottky barriers between the channel and the contacts guarantees a pronounced modulation of the magnetoresistance sufficient to open a possibility to operate SpinFETs at room temperature. We also demonstrated that silicon fins with [100] orientation exhibit a stronger dependence on the value of the spin-orbit interaction and are thus preferable for practical realization of silicon-based SpinFETs.

 

Keywords: Spin field-effect transistor; spin-orbit interaction; temperature

 

ABSTRAK

Transistor spin kesan medan (SpinFETs) adalah calon yang menjanjikan masa depan mikroelektronik litar bersepadu. SpinFET terdiri daripada dua sentuhan feromagnetik (punca dan salir), antara saluran semikonduktor. Modulasi arus dicapai dengan pelarasan secara elektrik kekuatan voltan get bergantung bagi interaksi orbit putaran di rantau semikonduktor. Sifat SpinFETs bagi pelbagai parameter - ketidaksepadanan jalur, ketinggian sempadan di antara sentuhan dan saluran dan kekuatan gandingan putaran orbit untuk pelbagai suhu telah dikaji. Ditunjukkan bahawa pembentukan sempadan Schottky antara saluran dan sentuhan menjamin modulasi ketara magnetorintangan yang mencukupi untuk membuka kemungkinan untuk operasi SpinFETs pada suhu bilik. Ditunjukkan juga bahawa sirip silikon dengan [100] orientasi menunjukkan pergantungan yang kuat kepada nilai interaksi putaran orbit dan dengan itu lebih baik untuk realisasi praktikal SpinFETs berasaskan silikon.

 

Kata kunci: Interaksi spin-orbit; suhu;  transistor spin kesan medan

REFERENCES

Bournel, A., Dollfus, P., Bruno, P. & Hesto, P. 1998. Gate-induced spin precession in an In0.53Ga0.47 as two dimensional electron gas. European Physical Journal Applied Physics 4: 1.

Büttiker, M. 1986. Four-terminal phase-coherent conductance. Physical Review Letters 57: 1761-1764.

Cahay, M. & Bandyopadhyay, S. 2004. Phase-coherent quantum mechanical spin transport in a weakly disordered quasi-one-dimensional channel. Physical Review B 69(4): 045303.

Cheng, J., Wu, M. & Fabian, J. 2010. Theory of the spin relaxation of conduction electrons in silicon. Physical Review Letters 104: 016601.

Dash, S., Sharma, S., Le Breton, J., Peiro, J., Jaffres, H., George, J-M., Lemaitre, A. & Jansen, R. 2011. Spin precession and inverted Hanle effect in a semiconductor near a finite-roughness ferromagnetic interface. Physical Review B 85: 054410.

Datta, S. & Das, B. 1990. Electronic analog of the electro-optic modulator. Applied Physics Letters 56(7): 665-667.

Dresselhaus, G. 1955. Spin-orbit coupling effects in Zinc blende structures. Physical Review 100: 580-586.

Huang, B., Monsma, D. & Appelbaum, I. 2007. Coherent spin transport through a 350 micron thick silicon wafer. Physical Review Letters 99: 177209.

Inokuchi, T., Ishikawa, M., Sugiyama, H., Saito, Y. & Tezuka, N. 2012. Spin injection and detection between CoFe/AlOx junctions and SOI investigated by Hanle effect measurements. Journal of Applied Physics 111: 07C316.

Jansen, R. 2012. Silicon spintronics. Nature Materials 11: 400-408.

Jiang, K.M., Zhang, R., Yang, J., Yue, C-X. & Sun, Z-Y. 2010. Tunneling magnetoresistance properties in ballistic spin field-effect transistors. IEEE Transactions on Electron Devices 57: 2005.

Landauer, R. 1957. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM Journal of Research and Development 1(3): 223-231.

Nestoklon, M.O., Ivchenko, E.L., Jancu, J-M. & Voisin, P. 2008. Electric field effect on electron spin splitting in SiGe/Si quantum wells. Physical Review B 77(15): 155328.

Osintsev, D., Sverdlov, V., Stanojevic, Z., Makarov, A., Weinbub, J. & Selberherr, S. 2011. Properties of silicon ballistic spin fin-based field-effect transistors. Proceedings 219th Meeting of the Electrochemical Society, Advanced Semiconductor-on-Insulator Technology and Related Physics 35: 277.

Prada, M., Klimeck, G. & Joynt, R. 2011. Spin-orbit splittings in Si/SiGe quantum wells: from ideal Si membranes to realistic heterostructures. New Journal of Physics 13: 013009.

Rashba, E.I. 1960. Properties of semiconductors with an extremum loop. Fizika Tverdogo Tela. 2: 1109.

Sugahara, S. & Nitta, J. 2010. Spin-transistor electronics: An overview and outlook. Proceedings of the IEEE 98(12).

Tsuchiya, H., Ando, H., Sawamoto, S., Maegawa, T., Hara, T., Yao, H. & Ogawa, M. 2010. Comparisons of performance potentials of silicon nanowire and graphene nanoribbon MOSFETs considering first-principles bandstructure effects. IEEE Transactions on Electron Devices 57: 406.

Wilamowski, Z. & Jantsch, W. 2004. Suppression of spin relaxation of conduction electrons by cyclotron motion, Physical Review B 69(3): 035328.

 

*Corresponding author; email: osintsev@iue.tuwien.ac.at

 

 

previous