Sains Malaysiana 42(8)(2013): 1081–1089


Geotechnical Characterisation of Marine Clay as Potential Liner Material

(Pencirian Geoteknik Lempung Marin sebagai Potensi Bahan Pelapik)



Z.A. Rahman*, W.Z.W. Yaacob, S.A. Rahim, T. Lihan, W.M.R. Idris & W.N.F. Mohd Sani

School Environmental & Natural Resource Sciences, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, Bangi 43600 Selangor D.E. Malaysia


Received: 18 July 2012/Accepted: 22 February 2013



Natural clay is commonly used as a liner material to contain landfill leachate from contaminating the environment. A key characteristic of liner material is its hydraulic conductivity. It is recommended that the hydraulic conductivity of the potential liner material should be of 1×10-9 m/s or less. This paper presents the geotechnical characteristics of marine clay that may be used as landfill liner material. The tests were consistency index, compaction behaviour, compressibility and hydraulic conductivity. The marine clay was dominated by finer fraction of silt and clay (78%-88%) followed by sand (12%-22%). The clay minerals commonly present were montmorillonite, kaolinite and illite as well as quartz as the non-clay mineral. The consistency index for the liquid limit, wL and plastic limit, wP were 56.6%-80.5% and 36%-45%, respectively. The plastic index, Ip of the marine clay samples ranged from 19% to 37%. The permeability test indicated that the hydraulic conductivity of the samples ranged between 1.10 × 10-9 and 2.44 × 10-9 m/s. The very low permeability showed by the marine clay can be related to the presence of high content of finer fraction. Compaction of marine clay samples resulted in maximum dry density, ρdmax that ranged between 1.5 and 1.6 g/cm3 and optimum moisture content, wopt that ranged between 18.2% and 25%. During the consolidation of the marine clay, the hydraulic conductivity decreased within the recommended permeability for landfill liners. This study showed that some geotechnical characteristics of the studied marine clay were in favour of being used as landfill liner material.


Keywords: Consistency index; landfill; liner; marine clay; shear strength



Lempung semula jadi sering digunakan sebagai bahan pelapik untuk menghalang pencemaran cecair larut resap tapak pelupusan ke persekitaran. Ciri utama bahan pelapik adalah sifat ketelapannya. Kekonduksian hidraulik yang disarankan bagi bahan berpotensi sebagai pelapik seharusnya 1×10-9 m/s atau kurang. Kertas ini menunjukkan ciri geoteknik lempung marin yang mungkin dapat digunakan sebagai bahan pelapik tapak pelupusan. Ujian yang dilakukan adalah indeks ketekalan, sifat pemadatan dan kekonduksian hidraulik. Lempung marin didominasi oleh fraksi halus bersaiz lodak dan lempung (78%-88%) diikuti oleh pasir (12%-22%). Mineral lempung yang sering hadir adalah monmorilonit, kaolinit dan ilit serta kuarza sebagai mineral bukan lempung. Indeks kekonsistensi bagi had cecair, wL dan had plastik, wp masing-masing adalah 56.6%-80.5% dan 36%-45%. Indeks keplastikan, IP sampel lempung marin berjulat daripada 19 hingga 37%. Ujian ketelapan menunjukkan kekonduksian hidraulik sampel berjulat antara 1.10 × 10-9 dan 2.44 × 10-9 m/s. Nilai ketelapan yang sangat rendah yang ditunjukkan oleh lempung marin boleh dikaitkan dengan kehadiran kandungan fraksi halus yang tinggi. Pemadatan sampel lempung marin menghasilkan ketumpatan kering maksimum, ρdmax berjulat 1.5 - 1.6 g/cm3 dan kandungan optimum lembapan, wopt berjulat antara 18.2% dan 25%. Semasa pengukuhan lempung marin, kekonduksian hidraulik menurun dalam kebolehtelapan yang disyorkan bagi bahan pelapik tapak pelupusan. Kajian ini menunjukkan ciri geoteknik lempung marin yang dikaji memihak sebagai bahan pelapik tapak pelupusan.


Kata kunci: Indeks ketekalan; kekuatan ricih; lempung marin; pelapik; tapak pelupusan


Ahn, H.S. & Jo, H.Y. 2009. Influence of exchangeable cations on hydraulic conductivity of compacted-bentonite. Applied Clay Science 44: 144-150.

Alamgir, M., McDonald, Ch., Roehl, K.E. & Ahsan, A. 2005. Integrated management and safe disposal of municipal solid waste in least developed Asian countries. A feasibility study. Khulna University of Engineering and Technology, Khulna, Bangladesh. p. 83.

Arasan, S. & Yetimoglu, T. 2006. Effect of leachate components on the consistency limits of clay liners. 11th National Soil Mechanic and Foundation Engineering Congress, Trabzon, Turkey pp. 439-445.

Arasan, S. 2010. Effect of chemicals on geotechnical properties of clay liners: A review. Research Journal of Applied Sciences, Engineering and Technology 2(8): 765-775.

Bagchi, A.C. 2004. Design of landfills and integrated solid waste management. In Landfill Design. 3rd ed. United States of America: Wiley and Sons.

Basack, S. & Purkayastha, R.D. 2009. Engineering properties of marine clays from the eastern coast of India. Journal of Engineering and Technology Research 1(6): 109-114.

Belloo, A.A. 2012. Geotechnical evaluation of reddish brown tropical soils. Geotechnical and Geology Engineering Journal 30: 481-498.

Benson, C.H. & Trast, J.M. 1995. Hydraulic conductivity of thirteen compacted clays. Clays and Clay Minerals 43(6): 669-681.

Bjerrum, L. 1973. Problems of soil mechanics and construction on soft clays: state of the art report. Proceedings 8th International Conference on Soil Mechanics and Foundation Engineering. Moscow, Russia

British Standard Institution 1377. 1990a. Methods of Test for Soil for Civil Engineering Purposes-Part 2: Classification Tests. BS1377, London.

British Standard Institution 1377. 1990b. Methods of Test for Soil for Civil Engineering Purposes-Part 4: Compaction-Related Tests. BS1377, London.

British Standard Institution 1377. 1990c. Methods of Test for Soil for Civil Engineering Purposes-Part 5: Compressibility, Permeability and Durability Tests. BS1377, London.

British Standard Institution 1377. 1990d. Methods of Test for Soil for Civil Engineering Purposes-Part 7: Shear Strength Tests (Total Stress). BS1377, London.

Chalermyanont, T., Arrykul, S. & Charoenhaisong, N. 2008. Potential use of lateritic and marine clay soils as landfill liners to retain heavy metals. Waste Management 29: 117-127.

Chew, S.H., Kamrazzuman, H.M. & Lee, F.H. 2004. Physicochemical and engineering behavior of cement treated clays. Journal of Geotechnical and Geoenvironmental Engineering ASCE 130(7): 696-706.

Chung, S.G., Ryu, C.K., Jo, K.Y. & Huh, D.Y. 2007. Geological and geotechnical characteristics of marine clays at the Busan new port. Marine Georesources and Geotechnology 23(3): 235-251.

Du, Y.J. & Hayashi, S. 2004. Some factors controlling the adsorption of potassium ions on clayey soils. Applied Clays Science 27: 209-231.

Department of Transport 1991. Specification for Highway Works. HMSO, London.

Dias, C.R.R. & Alves, A.M.L. 2009. Geotechnical properties of the Cassino Beach mud. Continental Shelf Research 29: 589-596.

EPA. 1990. Compilation of Information on Alternative Barriers for Liner and Cover Systems. EPA600-R-91-002. Prepared by Daniel, D.E. & Estornell, P.M. for Office of Research and Development, Washington, DC.

Hyde, A.L., Yasuhara, K. & Hirao, K. 1993. Stability criteria for marine clay under one-way cyclic loading. Journal of Geotechnical Engineering ASCE 119(11): 1771-1789.

Islam, M.R., Alamgir, M., Mohiuddin, K.M. & Hasan, K.M.M. 2008. Investigation of physical properties of a selected soil to use as a clay liner in sanitary landfill. Proceedings of National Seminar on Solid Waste Management-WasteSafe. pp.167-174.

Itakura, T., Airey, D.W. & Dobrolot, J.Y.M. 2005. Geotechnical characterisation of alluvial soils used to contain industrial liquid wastes. Bulletin of Engineering Geology and Environments 64: 273-285.

Jones, R.M., Murray, E.J. & Rix, D.W. 1993. Selection of clays for use as landfill liners. Waste Disposal by Landfill. Proceedings Symposium Green ’93. pp. 433-438.

Kamon, M. & Katsumi, T. 2001. Clay liners for waste landfill. In Clay Science for Engineering, edited by Adachi, K. & Fukue, M. & Balkema, A.A. pp. 29-46.

Kooistra, J.M. & Tovey, N.K. 1994. Effects of compaction on soil microstructure. In Soil Compaction in Crop Poduction. Soane, B.D. & van Quwerkerk, C. Elsevier pp. 91-111.

Long, M. & Menkiti, C.O. 2007. Geotecnical properties of Dublin Boulder clay. Geotechnique 57(7): 595-611.

Means, R.E. & Parchers, J.V. 1963. Physical Properties of Soils. Ihio: Merrill Book Inc. Columbus.

Mitchell, J.K. 1993. Fundamentals of Soil Behavior. 2nd ed. New York: John Wiley & Sons.

Murray, E.J., Rix, D.W. & Humphrey, R.D. 1992. Clay lining to landfill sites. Quarterly Journal of Engineering Geology 25(4): 371-376.

Ohtsubo, M., Egashira, K., Tanaka, H. & Mishima, O. 2002. Clay minerals and geotechnical index properties of marine clays in East Asia. Marine Georesources & Geotechnology 20(4): 223-235.

Pierce, J.W. & Siegel, F.R. 1969. Quantification in clay minerals studies of sediment and sedimentary rock. Journal of Sediment Petrology 9: 187-193.

Rao, D.K., Raju, R.P., Sowjanya, C. & Rao, P. 2009. Laboratory studies on the properties of stabilised marine clay from Kakinada Sea, Coast India. International Journal of Engineering Science and Technology 3(1): 422-428.

Rao, D.K., Raju, R.P. & Kumar, R.A. 2011. Consolidation characteristics of treated marine clay for foundation bed soils. International Journal of Engineering Science and Technology 3(2): 788-796.

Rominger, J.F. & Rutledge, P.C. 1952. Use of soil mechanics data in correlation and interpretation of Lake Aggassiz sediments. Journal of Geology 60(2): 160-180.

Sridharan, A., Rao, P.R. & Miura, N. 2004. Characterization of Ariake and other marine clays. In Proceedings of International Symposium of Lowland Technology 1: 53-58.

Suneel, M., Park, L.K. & Im, J.C. 2008. Compressibility characteristics of Korean marine clay. Marine Georesources & Geotechnology 26(2): 111-127.

Taha, M.T., Ahmed, J. & Asmirza, S. 2000. One-dimensional consolidation of Kelang clay. Pertanika Journal Science & Technology 8(1): 19-29.

Tan, T.S., Goh, T.L. & Yong, K.Y. 2002. Properties of Singapore marine clay improved by cement mixing. Geotechnical Testing Journal 25(4): 1-11.

Terzaghi, K., Peck, R. & Mesri, G. 1996. Soil Mechanics in Engineering Practice. 3rd ed. New York: Wiley-Interscience, John Wiley and Sons, Inc.

Van Imple, W.F. 1998. Environmental Geotechnics: ITC5 Activities-State of Art. In Proceedings of the 3rd International Congress on Enviromental Geotechnics pp.1163-1187.

Yilmaz, I. 2000. Evaluation of shear strength of clayey soils by using their liquidity index. Bulletin of Engineering. Geology and Environments 59: 227–229.

Yong, R.N., Tan, B.K., Bently, S.P., Thomas, H.R., Yaacob, W.Z.W. & Hashim, A. 1998. Assessment of attenuational capability of two clay soils via leaching column test. In: Proceedings of the 3rd International Congress on Enviromental Geotechnics pp. 503-308.

Yong, R.N. & Phadungchewit, Y. 1993. pH influence on selectively and retention of heavy metals in some clay soils. Canadian Geotechnical Journal 30: 821-833.



*Corresponding author; email: