Sains Malaysiana 43(12)(2014): 1843–1853

 

Drivers of Soil Carbon Dioxide Efflux in a 70 years Mixed Trees Species of Tropical Lowland Forest, Peninsular Malaysia

(Pemacu kepada Karbon Dioksida Efluks Tanah dalam Masa 70 Tahun Kepelbagaian

Spesies Pokok di Hutan Tropika Tanah Rendah, Semenanjung Malaysia)

 

K.H. MANDE1, A.M. ABDULLAH2*, A.A. ZAHARIN3, & A.N. AINUDDIN4

 

1Air Pollution & Ecophysiology Laboratory, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia

 

2Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia

 

3Environmental Forensics Research Centre, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia

 

4Institute of Tropical Forest and Forest Product, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia

 

Received: 27 November 2013/Accepted: 22 April 2014

 

ABSTRACT

Forest biomass is a major component in carbon sequestration and a driver of heterotrophy and autotrophy soil CO2 efflux, as it accumulation increases carbon organic nutrients, root growth and microbial activity. Understanding forest biomass rational to ascertain the forest ecosystems productivity is important. A study has been conducted in a 70-years-old forest of mixed tree species, Sungai Menyala Forest, Port Dickson, Peninsular Malaysia, measuring the total above ground biomass (TAGB), below ground biomass (BGB), total forest carbon (SOCs), soil organic carbon stock (SOCstoc) and soil CO2 efflux from 1 February to 30 June 2013. The aim was to determine the effect of forest biomass, litter fall and influence of environmental factors on soil CO2 efflux. Multiple regression analysis has been conducted on the relationship between the variables and the soil CO2 efflux. Soil CO2 efflux was found to range from 92.09-619.67 mg m-2 h-1, with the amount of the tropical forest biomass estimated at 1.9×106, 7.7×106 and 9.2×105 kg for TAGB, BGB and SOCs, respectively. The analysis showed a strong correlation between soil CO2 efflux and soil temperature, soil moisture, water potential and forest carbon input with R2 more than 0.89 at p<0.01. The findings showed a strong contribution from forest biomass as drivers of heterotrophy and autotrophy soil CO2 efflux. We can conclude that the forest biomass and environmental factors are responsible for the remarkable variation in soil CO2 efflux, as climate change can cause increase in temperature as well as deforestation decreases forest biomass.

 

Keywords: Autotrophy; carbon input; forest biomass; heterotrophy; microbial activities; soil CO2 efflux

ABSTRAK

Biojisim hutan adalah komponen utama dalam perampasan karbon dan pemacu kepada CO2 efluks tanah secara heterotrofi dan autotrofi dengan meningkatnya penghimpunan nutrien karbon organik, pertumbuhan akar dan aktiviti microbiologi. Pemahaman biojisim hutan yang rasional kepada penentuan produktiviti ekosistem hutan adalah penting. Satu kajian telah dijalankan di dalam hutan yang berusia 70 tahun dengan kepelbagaian spesies pokok, di Hutan Sungai Menyala, Port Dickson, Semenanjung Malaysia, dengan pengukuran jumlah biojisim di atas tanah (TAGB), biojisim di bawah tanah (BGB), jumlah karbon hutan (SOCs), stok karbon organik tanah (SOCstoc) dan juga CO2 efluks tanah dari 1 Februari hingga 30 Jun 2013. Kajian ini bertujuan untuk menentukan kesan biojisim hutan, gugurnya kekotoran serta pengaruh faktor alam sekitar terhadap CO2 efluks tanah. Analisis pengunduran gandaan telah dijalankan dalam penentuan hubungan antara pemboleh ubah dengan CO2 efluks tanah. CO2 efluks tanah didapati berada dalam julat 92.09-619.67 mg m-2 h-1, dengan jumlah biojisim hutan tropika dianggarkan pada 1.9×106 kg, 7.7×106 kg, 9.2×105 kg masing-masing bagi TAGB, BGB dan SOCs. Analisis menunjukkan perhubungan yang kuat antara CO2 efluks terhadap suhu tanah, kelembapan tanah, keupayaan air dan input karbon hutan dengan nilai R2 melebihi 0.89 pada nilai p<0.01. Penemuan ini menunjukkan sumbangan yang kuat daripada biojisim hutan sebagai pemacu heterotrofi dan autotrofi CO2 efluks tanah. Disimpulkan bahawa biojisim hutan dan faktor-faktor alam sekitar bertanggungjawab terhadap kepelbagaian yang menakjubkan dalam CO2 efluks tanah, dengan perubahan iklim boleh menyebabkan pertambahan suhu begitu juga menurunnya biojisim hutan melalui penyahhutanan.

 

Kata kunci: Aktiviti mikrobial; autotrofi; biojisim hutan; CO2 efluks tanah; input karbon; heterotrofi

REFERENCES

Adachi, M., Bekku, Y.S., Rashidah, W., Okuda, T. & Koizumi, H. 2006. Differences in soil respiration between different tropical ecosystems. Applied Soil Ecology 34(2-3): 258-265.

Akburak, S. & Makineci, E. 2013. Temporal changes of soil respiration under different tree species. Environmental Monitoring and Assessment 185(4): 3349-3358.

Asensio, D., Yuste, J.C., Mattana, S., Ribas, À., Llusià, J. & Peñuelas, J. 2012. Litter VOCs induce changes in soil microbial biomass C and N and largely increase soil CO2 efflux. Plant and Soil 360(1-2): 163-174.

Coleman, D.C., Hunter, M.D., Hutton, J., Pomeroy, S. & Swift, L. 2002. Soil respiration from four aggrading forested watersheds measured over a quarter century. Forest Ecology and Management 157: 247-253.

Davidson, E.A., Savage, K., Bolstad, P., Clark, D.A., Curtis, P.S., Ellsworth, D.S., Hanson, P.J., Law, B.E., Luo, Y., Pregitzer, K.S., Randolph, J.C. & Zak, D. 2002. Belowground carbon allocation in forests estimated from litterfall and IRGA-based soil respiration measurements. Agricultural and Forest Meteorology 113: 39-51.

Dixon, R., Brown, S., Houghton, R., Solomon, A., Trexler, M. & Wisniewski, J. 1994. Carbon pools and flux of global forest ecosystems. Science (Washington) 263(5144): 185-189.

Eleanor, M. 2008. Soil organic carbon. In Encyclopedia of Earth, edited by Cleveland, C.J. Environmental Information Coalition, National Council for Science and the Environment, Washington, D.C. Accessed on 13 June 2009.

Hibbard, K.A., Law, B.E., Reichstein, M. & Sulzman, J. 2005. An analysis of soil respiration across northern hemisphere temperate ecosystems. Biogeochemistry 73: 29-70.

Houghton, R. & Hackler, J. 1999. Emissions of carbon from forestry and land use change in tropical Asia. Glob. Chang. Biol. 5(4): 481-492.

Jandl, R., Lindner, M., Vesterdal, L., Bauwens, B., Baritz, R., Hagedorn, F., Johnson, D.W., Minkkinen, K. & Byrne, K.A. 2007. How strongly can forest management influence soil carbon sequestration? Geoderma 137: 253-268.

Jin, H.M., Sun, O.J., Luo, Z.K. & Liu, J. 2009. Dynamics of soil respiration in sparse Ulmus pumila woodland under semi-arid climate. Ecological Research 24(4): 731-739.

Kato, J., Tadaki, Y. & Ogawa, H. 1978. Biomass and growth increment studies in Pasoh Forest, Malaysia. Nat. J. 30: 211-224.

Lee, M., Nakane, K., Nakatsubo, T. & Koizumi, H. 2003. Seasonal changes in the contribution of root respiration to total soil respiration in a cool-temperate deciduous forest. Plant and Soil 255(1): 311-318.

Manokaran, N., LaFrankie, J.V., Kochummen, K.M., Quah, E.S., Klahn, J.E., Ashton, P.S. & Hubbell, S.P. 1990. Methodology for the fifty-hectare research plot at Pasoh Forest reserve. Res. Pam. For. Res. Inst. Malaysia 104: 1-69.

McCarthy, D.R. & Brown, K.J. 2006. Soil respiration responses to topography, canopy cover, and prescribed burning in an oakhickory forest in southeastern Ohio. For. Ecol. Manage. 237: 94-102.

Ogawa, J.M., Sandeno, J.L. & Mathre, J.H. 1963. Comparisons in development and chemical control of decay organism on mechanical and hand harvested stone fruits. Plant Das. Rep. 47: 129-133.

Raich, J.W., Potter, C.S. & Bhagawati, D. 2002. Interannual variability in global soil respiration, 1980-1994. Global Change Biology 8: 800-812.

Raich, J.W. & Tufekcioglu, A. 2000. Vegetation and soil respiration: Correlations and controls. Biogeochemistry 48: 71-90.

Raich, J.W. & Schlesinger, W.H. 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44B: 81-99.

Ravindranath, N.H., Somasekhar, B.S. & Gadgil, M. 1997. Carbon flows in Indian forest. Climate Change 35: 297-320.

Saiz, G., Green, C., Butterbach-Bahl, K., Kiese, R., Avitabile, V. & Farrell, E.P. 2006. Seasonal and spatial variability of soil respiration in four Sitka spruce stands. Plant and Soil 287(1-2): 161-176.

Sartori, F., Lal, R., Ebinger, M.H. & Eaton, J.A. 2007. Changes in soil carbon and nutrient pools along a chronosequence of poplar plantations in the Columbia Plateau, Oregon, USA. Agric. Ecosyst. Environ. 122: 325-339.

Shi, Z., Li, Y.Q., Wang, S.J., Wang, G.B., Ruan, H.H., He, R., Tang, Y.F. & Zhang, Z.X. 2009. Accelerated soil CO2 efflux after conversion from secondary oak forest to pine plantation in southeastern China. Ecol. Res. 24: 1257-1265.

Sollins, P., Glassman, C., Paul, E.A., Swanston, C., Lajtha, K., Heil, J.W., Elliott, E.T. & Robertson, P.G. 1999. Soil Carbon and Nitrogen: Pools and Fractions. Standard soil methods for long-term ecological research. Oxford: Oxford University Press pp. 89-105.

Tanaka, K. & Hashimoto, S. 2006. Plant canopy effects on soil thermal and hydrological properties and soil respiration. Ecol. Model 196: 32-44.

Tang, X., Zhou, G., Liu, S., Zhang, D., Liu, S. & Li, J. 2006. Dependence of soil respiration on soil temperature and soil moisture in successional forests in Southern China. Journal of Integrative Plant Biology 48(6): 654-663.

Teklay, T. & Chang, S.X. 2008. Temporal changes in soil carbon and nitrogen storage in a hybrid poplar chronosequence in northern Alberta. Geoderma 144: 613-619.

Wu, Y.Q., Liu, G.H., Fu, B.J., Liu, Z.F. & Hu, H.F. 2006. Comparing soil CO2 emission in pine plantation and oak shrub: Dynamics and correlations. Ecol. Res. 21: 840-848.

 

 

*Corresponding author; email: amakmom@upm.edu.my

 

 

 

previous