Sains Malaysiana 43(12)(2014): 1915–1925

 

Establishment of Physicochemical Measurements of Water Polluting Substances via Flow Perturbation Gas Chromatography

(Menentusahkan Tentu-ukur Juzuk Fizika-kimia Bahan-bahan yang Mencemarkan Air Melalui Kromatografi Gas Aliran Terganggu)

 

 

H.H. MOHAMMAD*, SHARIFUDDIN MOHD ZAIN, RASHID ATTA KHAN

& KHALISANNI KHALID

Department of Chemistry, Faculty of Science, University of Malaya

50603 Kuala Lumpur, Malaysia

 

Received: 6 December 2013/Accepted: 16 April 2014

 

ABSTRACT

Spillage of water polluting substances via industrial disaster may cause pollution to our environment. Thus, reversed-flow gas chromatography (RF-GC) technique, which applies flow perturbation gas chromatography, was used to investigate the evaporation and estimate the diffusion coefficients of liquid pollutants. Selected alcohols (99.9% purity) and its mixtures were used as samples. The evaporating liquids (stationary phase) were carried out by carrier gas-nitrogen, 99.9% purity (mobile phase) to the detector. The findings of this work showed the physicochemical measurements may vary depending on the composition of water and alcohol mixtures, temperature of the mixtures, as well as the types of alcohol used. This study implies that there is a variation in the results based on the concentration, types and temperature of the liquids that may contribute in the references for future research in the area of environmental pollution analysis.

 

Keywords: Alcohol mixtures; evaporation rates; liquid-gas interphase; liquid pollutants; spillage; vapour pressure

 

ABSTRAK

Limpahan bahan-bahan pencemaran melalui bencana industri boleh menyebabkan pencemaran kepada alam sekitar kita. Oleh itu, teknik gas kromatografi aliran berbalik (KTAB) yang mengaplikasikan teknik kromatografi gas aliran terganggu digunakan bagi menentu ukur kadar penyejatan dan menganggar pekali resapan bahan-bahan pencemar. Alkohol terpilih (99.9% darjah kepekatan) dan campuran telah digunakan sebagai sampel. Cecair menyejat (fasa penyebaran) telah diangkut oleh gas pengangkut iaitu nitrogen, 99.9% ketulenan (fasa persampelan) ke pengesan. Keputusan kajian ini menunjukkan ukuran fizika-kimia mungkin berbeza bergantung kepada komposisi air dan alkohol di dalam campuran, suhu campuran dan jenis alkohol yang digunakan. Kajian ini menunjukkan bahawa terdapat perubahan keputusan berasaskan kepada kepekatan, jenis alkohol serta suhu campuran kajian dan ia boleh menyumbang kepada rujukan untuk kajian akan datang dalam bidang analisis pencemaran alam sekitar.

 

Kata kunci: Campuran alkohol; cecair pencemar; fasa cecair-gas; kadar penyejatan; tekanan wap; tumpahan

REFERENCES

Agathonos, P. & Karaiskakis, G. 1989a. Measurement of activity coefficients, mass transfer coefficients and diffusion coefficients in multicomponent liquid mixtures by reversed-flow gas chromatography. Journal Of Chemical Society, Faraday Transaction 85(6): 1357-1363.

Agathonos, P. & Karaiskakis, G. 1989b. Thermodynamic study of polymer-solvent systems by reversed-flow gas chromatography. Journal of Applied Polymer Science 37(8): 2237-2250.

Atta, K.R., Gavril, D. & Karaiskakis, G. 2002. New methodology for the measurement of diffusion coefficients of pure gases into gas mixtures. Instrumentation Science & Technology 30(1): 67-78.

Beverley, K.J., Clint, J.H. & Fletcher, P.D.I. 1999. Evaporation rates of pure liquids measured using a gravimetric technique. Physical Chemistry Chemical Physics 1: 149-153.

Birdi, K.S., Vu, D.T. & Winter, A. 1989. A study of the evaporation rates of small water drops placed on a solid surface. Journal of Physical Chemistry 93: 3702-3703.

Brown, I., Fock, W. & Smith, F. 1969. The thermodynamic properties of solutions of normal and branched alcohols in benzene and n-hexane. The Journal of Chemical Thermodynamics 1(3): 273-291.

Cheng, J.J. & Timilsina, G.R. 2011. Status and barriers of advanced biofuel technologies: A review. Renewable Energy 36(12): 3541-3549.

Davies, J.T. & Rideal, E.K. 1961. Interfacial Phenomena. New York: Academic Press.

Dilling, W.L. 1977. Interphase transfer processes. II. Evaporation rates of chloro methanes, ethanes, ethylenes, propanes, and propylenes from dilute aqueous solutions. Comparisons with theoretical predictions. Environmental Science & Technology 11(4): 405-409.

Dilling, W.L., Tefertiller, N.B. & Kallos, G. 1975. Evaporation rates and reactivities of methylene chloride, chloroform, 1,1,1-trichloroethane, trychloroethylene, tetrachloroethylene, and other chlorinated compounds in dilute aqueous solutions. Environmental Science & Technology 9: 833-838.

Dimitrios, G., Georgake, A. & Karaiskakis, G. 2012. Kinetic study of oxygen adsorption over nanosized Au/γ-Al2O3 supported catalysts under selective CO oxidation conditions. Molecules 17: 4878-4895.

Fuller, E.N., Schettler, P.D. & Giddings, J.C. 1966. A new method for prediction of binary gas-phase diffusion coefficients. Industrial & Engineering Chemistry 58: 18-27.

Gavril, D. 2010. Surface studies by reversed-flow inverse gas chromatography: A review. Catalysis Today 154(1-2): 149- 159.

Gavril, D., Atta, K.R. & Karaiskakis, G. 2006. Study of the evaporation of pollutant liquids under the influence of surfactants. AIChE 52(7): 2381-2390.

Gavril, D. & Karaiskakis, G. 1997. New gas chromatographic instrumentation for studying mass transfer phenomena. Instrumentation Science & Technology 25(3): 217-234.

Goodman, W. Tipler, A. 2009. Nitrogen and hydrogen as alternate carrier gas for GC/MS. International Gases & Instrumentation. Sept/Oct Issue.

Grushka, E. & Maynard, V.R. 1972. Measurements of gaseous diffusion coefficients by gas chromatography. Journal of Chemical Education 49(8): 565.

Hofmann, H.E. 1932. Evaporation rates of organic liquids. Industrial and Engineering Chemistry 24(2): 135-140.

Hu, N., Wu, D., Cross, K., Burikov, S., Dolenko, T., Patsaeva, S. & Schaefer, D.W. 2010. Structurability: A collective measure of the structural differences in vodkas. Journal of Agricultural and Food Chemistry 58(12): 7394-7401.

Jozsef, G. 2009. Physical model for vaporization. Fluid Phase Equilibria 283: 89-92.

Karaiskakis, G., Agathonos, P., Niotis, A. & Katsanos, N.A. 1986. Measurement of mass transfer coefficients for the evaporation of liquids by reversed-flow gas chromatography. Journal of Chromatography A 364: 79-85.

Karaiskakis, G. & Gavril, D. 2004. Determination of diffusion coefficients by gas chromatography. Journal of Chromatography A 1037: 147-189.

Karaiskakis, G. & Katsanos, N.A. 1984. Rate coefficients for evaporation of pure liqulds and diffusion coefficients of vapors. J. Phys. Chem. 88: 3674-3678.

Karaiskakis, G., Katsanos, N.A., Georgiadou, I. & Lycourghiotis, A. 1982. Catalytic dehydration of alcohols studied by reversed-flow gas chromatography. Journal of Chemical Society, Faraday Transaction 1 78: 2017-2022.

Karaiskakis, G., Lycourghiotis, A. & Katsanos, N.A. 1982. Kinetic study of the drying step of supported catalysts by reversed-flow gas chromatography. Chromatographia 15(6): 351-354.

Katsanos, N.A. 1988. Flow Perturbation Gas Chromatography. New York: Marcel Dekker Inc.

Katsanos, N.A., Agathonos, P. & Niotis, A. 1988. Mass transfer phenomena studied by reversed-flow gas chromatography. 2. Mass transfer and partition coefficients across gas-solid boundaries. The Journal of Physical Chemistry 92: 1645- 1650.

Katsanos, N.A., Karaiskakis, G. & Agathonos, P. 1985. Measurement of activity coefficients by reversed-flow gas chromatography. Journal of Chromatography A 349(2): 369-376.

Khalid, K., Khan, R.A. & Mohd. Zain, S. 2012. Determination of diffusion coefficient and activation energy of selected organic liquids using reversed-flow gas chromatographic technique. Sains Malaysiana 41(9): 1109-1116.

Khalid, K., Khan, R.A. & Mohd. Zain, S. 2011. Determination of diffusion coefficients of selected long chain hydrocarbons using reversed-flow gas chromatographic technique. E-Journal of Chemistry 8(4): 1916-1924.

Lainioti, G.C., Kapolos, J., Koliadima, A. & Karaiskakis, G. 2010. New separation methodologies for the distinction of the growth phases of Saccharomyces cerevisiae cell cycle. Journal of Chromatography A 1217(11): 1813-1820.

Mackay, D. & Leinonen, P.J. 1975. Rate of evaporation of low solubility contaminants from water bodies to atmosphere. Environmental Science & Technology 9(13): 1178-1180.

Mackay, D. & Wolkolf, W.A. 1973. The rate of evaporation of environmental contaminants from water bodies to the atmosphere. Environmental Science & Technology 7: 611- 614.

Metaxa, E., Kolliopoulos, A., Agelakopoulou, T. & Roubani- Kalantzopoulou, F. 2009. The role of surface heterogeneity and lateral interactions in the adsorption of volatile organic compounds on rutile surface. Applied Surface Science 255(13-14): 6468-6478.

Mohammad, H.H., Mohd. Zain, S., Atta Rashid, K. & Khalid, K. 2013. Study the effect of imposing surfactants toward the evaporation of low molecular weight alcohol. International Journal of Environmental Science and Development 4(4): 403-407.

O’Hare, K.D., Spedding, P.L. & Grimshaw, J. 1993. Evaporation of the ethanol and water components comprising a binary liquid mixture. Developments in Chemical Engineering and Mineral Processing 1(2-3): 118-128.

O’Hare, K.D. & Spedding, P.L. 1992. Evaporation of a binary liquid mixture. The Chemical Engineering Journal 48(1): 1-9.

Peter, A. & De. P.J. 2006. Atkins’ Physical Chemistry. 8th ed. New York: Oxford University Press.

Phillips, C.S.G., Hart-Davis, A.J., Saul, R.G.L. & Wormald, J. 1967. The direct study of heterogeneous catalysis by gas-solid chromatography. Journal of Chromatographic Science 5(8): 424-428.

Rowan, S.M., Newton, M.I. & McHale, G. 1995. Evaporation of microdroplets and the wetting of solid surfaces. Journal of Physical Chemistry 99: 13268-13271.

Rusdi, M. & Moroi, Y. 2004. Study on water evaporation through 1-alkanol monolayers by the thermogravimetry method. Journal of Colloid and Interface Science 272: 472-479.

States, R.J. & Gardner, C.S. 2000. Thermal structure of the mesopause region (80-105 km) at 40°N latitude. Part II: Diurnal variations. Journal of the Atmospheric Sciences 57(1): 78-92.

 

 

*Corresponding author; email: enal_fifi@yahoo.com

 

 

 

previous