Sains Malaysiana 43(2)(2014): 283–287

 

Carbon Ion-beam-induced Modification in Structural and Electrical Properties

of ZnO Nanowires

(Alur-ion Karbon Teraruh terhadap Modifikasi Struktur dan Sifat Elektrik Nano Wayar ZnO)

 

 

JAVED IQBAL*1, H. TABASSUM1, ISHAQ AHMAD2, TARIQ JAN1, C.F. DEE3,

M. MADHUKU4A.A. UMAR3& N. AHMAD1

 

1Laboratory of Nanoscience and Technology, Department of Physics

International Islamic University Islamabad, Pakistan

 

2Experimental Physics Labs, National Center for Physics, Islamabad 44000, Pakistan

 

3Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia

43600 Bangi, Selangor, Malaysia

 

4Themba LABS, Private Bag 11, Wits 2050, Johannesburg, South Africa

 

Received: 7 January 2013/Accepted: 31 July 2013

 

 

ABSTRACT

Zinc oxide nanowires (ZnO NWs) have an efficacious place in nanoworld due to their tremendous properties and applications. In the present work, structural and electrical properties of ZnO NWs have been modified by carbon (C) ions- beam irradiation. With ion-beam energy of 0.8MeV, the physical behaviors of NWs have been studied under different doses from 1×1012 to 1×1014 ions/cm2. The microstructural and Raman spectroscopy studies showed that the wurtzite crystal structure of the ZnO NWs has been changed into disordered amorphous one under high C ion doses. Whereas, the XRD results showed that Zn nanoparticles are fabricated at high C ion-beam irradiation on ZnO NWs. Scanning electron microscopy (SEM) depicts the formation of cross junctions and parallel junctions between ZnO NWs after C ion irradiation. DC conductivity measurements have confirmed that the conductivity of NWs decreases with increase in C ion doses. It is concluded that the lattice defects significantly contribute to decrease in the conductivity of ZnO NWs.

 

Keywords: Electrical conductivity; ion-beam irradiation; lattice defects; ZnO nanowires

 

ABSTRAK

Nano wayar zink oksida (Zn NWs) telah mendapat perhatian di dalam dunia nano kerana sifat dan kegunaannya yang pelbagai. Dalam kajian yang dilakukan, struktur dan sifat elektrik Zn NWs dimodifikasi dengan radiasi alur-ion karbon. Kelakuan fizikal NMs telah dikaji dengan menggunakan tenaga alur-ion sebanyak 0.8 MeV, pada julat 1×1012 sehingga 1×1014 ion/cm2. Kajian mikrostruktur dan spektrum Raman pada dos C yang tinggi menunjukkan struktur hablur wurtzit ZnO telah bertukar kepada amorfus yang tidak tersusun. Manakala keputusan XRD menunjukkan nanozarah Zn, terbentuk di atas Zn NWs apabila dikenakan pancaran alur-ion C yang tinggi. Mikroskop elektron imbasan (SEM) menunjukkan kehadiran simpang silang dan simpang selari antara Zn NWs selepas radiasi ion C. Pengujian kekonduksian DC mengesahkan kekonduksian NMs berkurangan dengan peningkatan dos ion C. Sebagai kesimpulan, kecacatan kekisi yang ketara telah menyebabkan penurunan kekonduksian ZnO NWs.

 

Kata kunci: Kecacatan kekisi; kekonduksian elektrik; nano wayar Zn; radiasi alur-ion

 

REFERENCES

 

Alim, K., Fonoberov, V-A., Shamsa, M. & Balandin, A-A. 2005. Micro-Raman investigation of optical phonons in ZnO nanocrystals. J. Appl. Phys. 97: 124313.

Choi, K-S., Ok, C-W., Jo, S-Y., Bai, K-H. & Im, Y-H. 2008. Ion bombardment effects on ZnO nanowires during plasma treatment. Appl. Phys. Lett. 93: 033112.

Dee, C-F., Ishaq, A., Long, Y., Xingtai, Z. & Burhanuddin, Y.M. 2011. Amorphization of ZnO nanowires by proton beam irradiation. NANO 6: 259-263.

Dee, C-F., Majlis, B-Y. & Salleh, M-M. 2008. Electrical characterization of cross linked ZnO nanostructures grown on Si and Si/SiO2. Sains Malaysiana 37: 281-283.

Dutta, M. & Basak, D. 2009. Multiwalled carbon nanotubes/ZnO nanowires composite structure with enhanced ultraviolet emission and faster ultraviolet respons. Chem. Phys. Lett. 480: 253-257.

Ishaq, A., Usman, M., Dee, C.F., Khurram, A.A., Yan, L., Zhou, X.T., Nadeem, A., Naseem, S., Rafique, H.M. & Majlis, B.Y. 2013. Effect for hydrogen, nitrogen, phosphorous, and argon ions irradiation on ZnO NWs. J. Nanopart. Res. 15: 1467.

Ishaq, A., Dee, C.F., Husnain, G., Rafique, H.M., Yan, L. & Naseem, S. 2012. Use of high-intensity electron beam to form nanohole, induce bending and fabricate nanocontact on a ZnO nanowire. Micro & Nano Lett. 7: 122-124.

Ishaq, A., Ni, Z., Yan, L., Gong, J. & Zhu, D. 2010. Constructing carbon nanotube junctions by Ar ion beam irradiation. Rad. Phys. Chem. 79: 687-691.

Ishaq, A., Sobia, A-R., Zhou, G-Y., Yan, L. & Zhou, X-T. 2012. Optically transparent carbon nanowire thin film. Journal of Experimental Nanoscience 7(1): 53.

Javed, I., Xiaofang, L., Huichao, Z., Chongchao, P., Yong, Z., Dapeng, Y. & Ronghai, Y. 2009. Room-temperature spin glass and near band edge (NBE) properties of highly disorder (FeCo)0.03Zn0.97O and (FeCoNi)0.03Zn0.97O nanorods. Journal of Applied Physics 106: 043902.

Lin, X., He, X-B., Yang, T-Z., Guo, W., Shi, D-X., Gao, H-J., Ma, D-D., Lee, S-T., Liu, F. & Xie, X-C. 2006. Intrinsic current-voltage properties of nanowires with four-probe scanning tunneling microscopy: A conductance transition of ZnO nanowires. Appl. Phys. Lett. 89: 043103.

Ni, Z., Li, Q., Gong, J., Zhu, D. & Zhu, Z. 2007. Structural change of carbon nanotubes produced by Si ion beam irradiation. Nucl. Instrum. Meth. Phys. Res. B 260: 542-546.

Ozgur, U., Alivov, Y-I., Liu, C., Teke, A., Reshchikov, M-A., Dogan, S., Avrutin, V., Cho, S-J. & Morkoc¸ H. 2005. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98: 041301.

Pan, C-J., Hsu, H-C., Cheng, H-M., Wu, C-Y. & Hsieh, W-F. 2007. Structural and optical properties of ZnMgO nanostructures formed by Mg in-diffusion ZnO nanowires. J. Solid State Chem. 180: 1188-1192.

Sahoo, S., Dhara, S., Sivasubramanian, V., Kalavathi, S. & Arora, A.K. 2009. Phonon confinement and substitutional disorder in Cd1−xZnxS nanocrystals. J. Raman Spectrosc. 40: 1050-1054.

Shan, F-K., Shin, B-C., Kim, S-C. & Yu, Y-S. 2003. Structural, optical, and electrical properties of transparent conductive In2O3-doped ZnO thin films grown by pulsed laser deposition. J. Kor. Phys. Soc. 42: 626-634.

Von, W-H., Pickenhain, R., Schmidt, H., Brandt, M., Biehne, G., Lorenz, M. & Grundmann, M. 2006. Deep acceptor states in ZnO single crystals. Appl. Phys. Lett. 89: 092122.

Wang, Z. 2009. Ten years venturing in ZnO nanostructures: From discovery to scientific understanding and technology applications. Chinese Science Bulletin 54: 4021-4034.

Wu, Y-L., Tok, A-I., Boey, F-Y., Zeng, X-T. & Zhang, X-H. 2007. Surface modification of ZnO nanocrystals. Appl. Surf. Sci. 253: 5473-5479.

Xiang, B., Wang, P-W., Zhang, X-Z., Dayeh, S-A., Aplin, D-P., Soci, C., Yu, D-P. & Wang, D-L. 2007. Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition. Nano Lett. 7: 323-328.

Yang, P., Yan, H., Mao, S., Russo, R., Johnson, J., Saykally, R., Morris, N., Pham, J., He, R. & Chao, H. 2002. Controlled growth of ZnO nanowires and their optical properties. Adv. Funct. Mater. 12: 323-331.

Zhang, S-B., Wei, S-H. & Zunger, A. 2001. Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. Phys. Rev. B. 63: 075205.

Zhang, Y., Manoj, K., Elias, K. & Goswami, Y. 2012.  Synthesis, characterization, and applications of ZnO nanowires. Journal of Nanomaterials 2012: 1-22.

Zhu, X-W., Li, Y-Q., Lu, Y., Liu, L-C. & Xia, Y-B. 2007. Effects of Li or Li/Mg dopants on the orientation of ZnO nanorods prepared by sol–gel method. Mater. Chem. Phys. 102: 75-79.

 

 

*Corresponding author; email: javed.saggu@iiu.edu.pk

 

 

 

 

 

previous