Sains Malaysiana 43(3)(2014): 321–329


Surface Ozone Trend in Major Rice Growing Areas in Malaysia

(Tren Ozon Permukaan di Kawasan Penanaman Padi Utama di Malaysia)





1Department of Engineering Science, Faculty of Science and Technology

Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia


2School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia


Received: 19 October 2012/Accepted: 13 June 2013



Surface ozone or tropospheric ozone has been recognized as one of the major factors that can give adverse impact on crops including rice plants. Effects of ozone on rice plants could be seen in decreased of biochemical activities and physiological performance which contribute to yield reduction. In Malaysia, surface ozone is on the rise due to increment anthropogenic sources i.e. urbanization, transportation and also industrialization process. This condition is alarming due to the fact that rice is the major staple food to the majority of Malaysian population. In this study, exceedence of ozone exposure above an hourly threshold concentration of 40 ppb (AOT40) and ozone trends in four major rice growing areas in Malaysia were assessed using time series analysis of ozone data recorded in each area from January 2000 until December 2010 with a total of 132 readings. The results showed a steady increase in exceedence ozone of yearly AOT40 and statistical significant upward trend for ozone concentrations in each rice growing area in Malaysia. This finding was particularly alarming because ozone is able to inhibit production of rice yields. Preventive actions need to be implemented as soon as possible in order to alleviate ozone threat to our national food security agenda.


Keywords: Accumulate ozone exposure above an hourly threshold concentration of 40 ppb; rice growing area; surface ozone; trend analysis



Ozon permukaan atau ozon troposfera telah dikenal pasti sebagai salah satu faktor utama yang boleh memberi kesan buruk kepada tanaman termasuk padi. Kesan ozon pada tanaman padi boleh dilihat dalam penurunan aktiviti biokimia dan prestasi fisiologi yang menyumbang kepada pengurangan hasil. Di Malaysia, ozon permukaan semakin meningkat disebabkan peningkatan sumber antropogenik iaitu perbandaran, pengangkutan dan juga proses perindustrian. Keadaan ini adalah membimbangkan kerana berdasarkan fakta, beras adalah makanan ruji utama kepada majoriti penduduk Malaysia. Dalam kajian ini, kepekatan pendedahan ozon di atas kepekatan ambang jam 40 ppb (AOT40) dan tren ozon di empat kawasan utama tanaman padi di Malaysia telah dinilai menggunakan analisis siri masa data ozon yang direkodkan pada setiap kawasan dari Januari 2000 hingga Disember 2010 dengan sebanyak 132 bacaan. Keputusan menunjukkan peningkatan yang stabil dalam lebihan ozon daripada AOT40 tahunan dan tren menaik yang ketara secara statistik untuk kepekatan ozon di setiap kawasan penanaman padi di Malaysia. Penemuan ini amat membimbangkan kerana ozon dapat menghalang pengeluaran hasil padi. Tindakan pencegahan perlu dilaksanakan secepat mungkin untuk mengurangkan ancaman ozon terhadap agenda keselamatan makanan negara.


Kata kunci: Analisis tren; kawasan tanaman padi; pendedahan ozon yang terkumpul di atas kepekatan ambang 40 ppb per jam; ozon permukaan


Afroz, R., Hassan, M.N. & Ibrahim, N.A. 2003. Review of air pollution and health impacts in Malaysia. Journal of Environmental Research 92(2): 71-77.

Bencala, K.E. & Seinfield, J.H. 1979. On frequency distribution of air pollutant concentrations. Journal of Atmospheric Environment 10: 941-950.

Emberson, L., Ashmore, M. & Murray, F. 2003. Air pollution impacts on crops and forests. A global assessment. Air Pollution Reviews. Vol. 4. London: Imperial College Press.

EPA. 2011. standards/.

Fuhrer, J. & Booker, F. 2003. Ecological issues related to ozone: Agricultural issues. Environment International 29: 141-154.

Gouveia, N. & Fletcher, T. 2000. Time series analysis of air pollution and mortality: Effects by cause, age and sosioeconomics status. Journal of Epidemiology and Community Health 54: 750-755.

Hong, W. 1997. A time series analysis of United States carrots exports to Canada. MS Thesis. North Dakota State University (unpublished).

Ishii, S., Marshall, F.M., Bell, J.N.B. & Abdullah, A.M. 2004. Impact of ambient air pollution on locally grown rice cultivars (Oryza sativa L.) in Malaysia. Water, Air and Soil Pollution 154: 187-201.

Kyriakidis, P.C. & Journal, A.G. 2001. Stochastic modeling of atmospheric pollution: A special time series framework, part II: Application to monitoring monthly sulfate deposition over Europe. Atmopsheric Environment 35: 2339-2348.

Lee, C.K. 2002. Multiracial characteristics in air pollutant concentration time series. Journal of Water Air Soil Pollution 135: 389-409.

Marzuki Ismail. 2011. Time-series analysis of ground level ozone in Muda Irrigation Scheme Area (MADA), Kedah. Journal of Sustainability Science and Management 6: 79-88.

Mills, G., Buse, A., Gimeno, B., Bermejo, V., Holland, M., Emberson, L. & Pleijel, H. 2007. A synthesis of AOT40- based response functions and critical levels of ozone for agricultural and crops. Atmospheric Environment 1: 2630- 2643.

MOA. 2008. Agriculture Statistical Handbook. Kuala Lumpur: Ministry of Agriculture and Agro-based Industry.

Naill, P.E. & Momani, M. 2009. Time series analysis model for rainfall data in Jordan: Case study for using time series analysis. American Journal of Environmental Sciences 5(5): 599-604.

Naja, M. & Akimoto, H. 2004. Contribution of regional pollution and long-range transport to the Asia-Pacific region: Analysis of long-term ozonesonde data over Japan. Journal of Geophysical Research 109: D21306.

Roberts, S. 2003. Combining data from multiple monitors in air pollution mortality time series studies. Atmospheric Environment 37(23): 3317-3322.

Salcedo, R.L.R., Alvim, F.M., Alves, C. & Martins, F. 1999. Time series analysis of air pollution mortality time series studies. Atmospheric Environment 33: 2361-2372.

Seinfeld, J.H. 1989. Urban air-pollution-State of the science. Science 243: 745-752.

Touloumi, G., Atkinson, R. & Terte, A.L. 2004. Analysis of health outcomes time series data in epidemiological studies. Environmetrics 15: 101-117.

World Health Organization. 2003. Health aspects of air pollution with particulate matter, ozone, and nitrogen dioxide. EUR/03/5042688. Bonn, Germany.

Yee, E. & Chen, R. 1997. A simple model for probability density functions of concentration fluctuations in atmospheric plumes. Journal of Atmospheric Environment 31: 991-1002.



*Corresponding author; email: