Sains Malaysiana 43(3)(2014): 459–465


A Hybrid Enzymatic Zinc-Air Fuel Cell

(Sel Bahan Api Hibrid Berenzim Zink-Udara)





Faculty of Engineering, International Islamic University Malaysia

P.O. Box 10, 50728 Kuala Lumpur, Malaysia


Received: 30 October 2012/Accepted: 13 June 2013



A hybrid biofuel cell, a zinc-air cell employing laccase as the oxygen reduction catalyst is investigated. A simple cell design is employed; a membraneless single chamber and a freely suspended laccase in the buffer electrolyte. The cell is characterised based on its open-circuit voltage, power density profile and galvanostatic discharge at 0.5 mA. The activity of laccase as an oxidoreductase is substantiated from the cell discharge profiles. The use of air electrode in the cell design enhanced the energy output by 14%. The zinc-air biofuel cell registered an open-circuit voltage of 1.2 V and is capable to deliver a maximum power density of 1.1 mWcm-2 at 0.4 V. Despite its simple design features, the power output is comparable to that of biocatalytic cell utilising a much more complex system design.


Keywords: Biocatalyst; bioelectrochemical cell; enzymatic zinc-air cell; hybrid biofuel cell; laccase; metal biofuel cell



Sel bio-bahan api hibrid, sel zink-udara menggunakan lakase sebagai pemangkin bagi penguraian oksigen dikaji. Reka bentuk sel yang mudah diguna pakai: Ruangan tunggal tanpa membran dan lakase yang diampaikan secara bebas di dalam elektrolit pemampan. Pencirian sel adalah berdasarkan voltan litar terbuka, profil ketumpatan kuasa dan discas pada arus malar 0.5 mA. Aktiviti lakase sebagai enzim penguraian oksigen dibuktikan daripada profil discas sel. Penggunaan elektrod udara di dalam reka bentuk sel berhasil menambahkan keluaran tenaga sebanyak 14%. Sel bio-bahan api zink-udara memberikan voltan litar terbuka 1.2 V dan berupaya menghasilkan ketumpatan kuasa maksimum 1.1 mWcm-2 pada 0.4 V. Di sebalik ciri reka bentuk sel yang mudah, keluaran kuasa yang dihasilkan adalah sebanding dengan sel bio-pemangkin yang menggunapakai reka bentuk sistem yang jauh lebih rumit.


Kata kunci: Bio-pemangkin; lakase; sel bio-bahan api hibrid; sel bio-bahan api logam; sel bioelektrokimia; sel zink-udara berenzim


Alcalde, M. 2007. Laccases: Biological functions, molecular structure and industrial applications. In Industrial Enzymes: Structure, Function and Applications, edited by Polaina, J. & MacCabe, A.P. Heidelberg: Springer.

Atanassov, P., Apblett, C., Banta, S., Brozik, S., Barton, S., Cooney, M., Liaw, B.Y., Mukerjee, S. & Minteer, S.D. 2007. Enzymatic biofuel cells. Electrochem. Soc. Interface 16: 28-31.

Bond, D.R. & Lovley, D.R. 2005. Evidence for involvement of an electron shuttle in electricity generation by geothrix fermentans. Appl. Environ. Microbiol. 71: 2186-2189.

Bullen, R.A., Arnot, T.C., Lakeman, J.B. & Walsh, F.C. 2006. Biofuel cells and their development. Biosens. Bioelectron. 21: 2015-2045. Chakkaravarthy, C., Abdul Waheed, A.K. & Udupa, H.V.K. 1981. Zinc-air alkaline batteries – A review. J. Power Sources 6: 203-306.

Flexer, V., Brun, N., Backov, R. & Mano, N. 2010. Designing highly efficient enzyme-based carbonaceous foams electrodes for biofuel cells. Energy Environ. Sci. 3: 1302-1306.

Habrioux, A., Merle, G., Servat, K., Kokoh, K.B., Innocent, C., Cretin, M. & Tingry, S. 2008. Concentric glucose/O2 biofuel cell. J. Electroanal. Chem. 622: 97-102.

Jindra, J., Mrha, J. & Musilová, M. 1973. Zinc-air cell with neutral electrolyte. J. Appl. Electrochem. 3: 297-301.

Kozawa, A., Zilionis, V.E. & Brodd, R.J. 1970a. Oxygen and hydrogen peroxide reduction at a ferric phthalocycnine-catalyzed graphite electrode. J. Electrochem. Soc. 117: 1470-1474.

Kozawa, A., Zilionis, V.E. & Brodd, R.J. 1970b. Electrode materials and catalysts for oxygen reduction in isotonic saline solution. J. Electrochem. Soc. 117: 1474-1478.

Liu, H., Ramnarayanan, R. & Logan, B.E. 2004. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ. Sci. Technol. 38: 2281-2285.

Mano, N., Mao, F., Shin, W., Chen, T. & Heller, A. 2003. A miniature biofuel cell operating at 0.78 V. Chem. Commun. 21: 518-519.

Mano, N., Kim, H.H., Zhang, Y.C. & Heller, A. 2002. An oxygen cathode operating in physiological solution. J. Am. Chem. Soc. 124: 6480-6486.

Martinez-Ortiz, J., Flores, R. & Vazquez-Duhalt, R. 2011. Molecular design of laccase cathode for direct electron transfer in a biofuel cell. Biosens. Bioelectron. 26: 2626-2631.

Minteer, S.D., Liaw, B.Y. & Cooney, M.J. 2007. Enzyme-based biofuel cells. Curr. Opin. Biotech. 18: 228-234.

Moon, H., Chang, I.S. & Kim, B.H. 2006. Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell. Bioresource Technol. 97: 621-627.

Murata, K., Kajiya, K., Nakamura, N. & Ohno, H.2009. Direct electrochemistry of bilirubin oxidase on three-dimensional gold nanoparticle electrodes and its application in a biofuel cell. Energy Environ. Sci. 2: 1280-1285.

Othman, R., Basirun, W.J., Yahaya, A.H. & Arof, A.K. 2001. Hydroponics gel as a new electrolyte gelling agent for alkaline zinc-air cells. J. Power Sources 103: 34-41.

Palmore, G.T.R. & Whitesides, G.M. 1994. Microbial and enzymatic biofuel cells. In Enzymatic Conversion of Biomass for Fuels Production, edited by Himmel, M.E., Baker, J.O. & Overend, R.P. ACS Symposium Series (American Chemical Society) 566: 271-290.

Ramlen, R.P. 1995. Metal/air batteries. In Handbook of Batteries, edited by David Linden, 2nd ed. New York: McGraw-Hill.

Ride, J.P. 1980. The effect of induced lignification on the resistance of wheat cell walls to fungal degradation. Physiol. Plant Pathol. 16: 187-196.

Sakai, H., Nakagawa, T., Tokita, Y., Hatazawa, T., Ikeda, T., Tsujimura, S. & Kano, K. 2009. A high-power glucose/ oxygen biofuel cell operating under quiescent conditions. Energy Environ. Sci. 2: 133-138.

Smolander, M., Boer, H., Valkiainen, M., Roozeman, R., Bergelin, M., Eriksson, J.E., Zhang, X.C., Koivula, A. & Viikari, L. 2008. Development of a printable laccase-based biocathode for fuel cell applications. Enzyme. Microb. Tech. 43: 93-102.

Tan, Y., Deng, W., Ge, B., Xie, Q., Huang, J. & Yao, S.2009. Biofuel cell and phenolic biosensor based on acid-resistant laccase-glutaraldehyde functionalized chitosan-multiwalled carbon nanotubes nanocomposites film. Biosens. Bioelectron. 24: 2225-2231.

Thurston, C.F. 1994. The structure and function of fungal laccases. Microbiology 140: 19-26.

Yaropolov, A.I., Skorobogat’ko, O.V., Vartanov, S.S. & Varfolomeyev, S.D. 1994. Laccase. Appl. Biochem. Biotechnol. 49: 257-280.

Yoshida, H. 1883. Chemistry of lacquer (Urushi) (Part 1). J. Chem. Soc. 43: 472-486.

*Corresponding author; email: