Sains Malaysiana 45(10)(2016): 1509–1516


Penyingkiran Ammonia dan Logam Berat daripada Air Sisa Industri Automotif Menggunakan Pasir Terubah Suai Secara Kimia

(Heavy Metals Removal from Automotive Wastewater using Chemically Modified Sand)



1Pusat Pengajian Sains Sekitaran dan Sumber Alam, Fakulti Sains dan Teknologi

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia


2Program Kesihatan Persekitaran, Fakulti Sains Kesihatan, Universiti Kebangsaan Malaysia

Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia


3Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia

43600 Bangi, Selangor Darul Ehsan, Malaysia


Received: 22 September 2015/Accepted: 4 March 2016



Keberkesanan rawatan air sisa industri automotif ditentukan dengan menggunakan kaedah penjerapan turus. Peratusan penyingkiran ammonia dan logam berat terpilih telah dikaji menggunakan pasir biasa dan pasir terubah suai secara kimia sebagai bahan penjerap. Dua model matematik iaitu Model Thomas serta Model Yoon-Nelson telah digunakan untuk menentukan kapasiti penjerapan maksimum ammonia. Peratusan penyingkiran ammonia menunjukkan pasir terubah suai secara kimia mencatatkan julat peratusan penyingkiran yang lebih tinggi iaitu 43.68% hingga 96.55% berbanding pasir biasa yang mencatatkan julat 0% hingga 89.66%. Logam berat zink, mangan, kromium, kuprum, arsenik, nikel, kobalt dan ferum mencatatkan peratusan penyingkiran antara 93% hingga 100% apabila menggunakan pasir terubah suai secara kimia manakala pasir biasa mencatatkan julat peratusan penyingkiran daripada 0.8% hingga 100%. Keputusan analisis menggunakan Model Thomas menunjukkan kapasiti penjerapan maksimum, qo ammonia menggunakan pasir terubah suai secara kimia (8.80 mg/g) adalah empat kali lebih tinggi daripada pasir biasa (2.57 mg/g) manakala masa bolos, t0.5 bahan penjerap yang ditentukan menggunakan Model Yoon dan Nelson mencatatkan masa tertinggi bagi pasir terubah suai secara kimia iaitu 30.18 min berbanding 9.57 min bagi pasir biasa. Kajian ini menunjukkan peratusan penyingkiran dan kapasiti penjerapan ammonia dan logam berat terpilih iaitu zink, mangan, kuprum, arsenik, nikel, kobalt dan ferum lebih tinggi bagi turus pasir terubah suai secara kimia berbanding pasir biasa.


Kata kunci: Ammonia; logam berat; pasir; penjerapan



The effectiveness of the automotive industry wastewater treatment has been determined by fixed-bed adsorption study. Two mathematical models which are Thomas model and Yoon and Nelson model were used to determine the maximum adsorption capacity of ammonia. Percentage of removal of ammonia using chemically modified sand indicate the removal percentage range of 43.68% to 96.55% compared to raw sand, which indicate the range of 0% to 89.66%. Zinc, manganese, chromium, copper, arsenic, nickel, cobalt and iron have been recorded to give removal percentage of 93% to 100% by using chemically modified sand compared to the raw sand which recorded the range of removal percentage of 0.8% to 100%. The analysis using Thomas model shows the maximum adsorption capacity; qo of ammonia using chemically modified sand (8.80 mg/g) was four times higher than normal sand (2.57 mg/g). Meanwhile, the time for 50% adsorbent to breakthrough, t0.5 determined by Yoon and Nelson model showing that the chemically modified sand obtained the time of 30.18 min compared to raw sand which is 9.57 min. This study indicated that the removal percentage and the adsorption capacity of ammonia and the selected heavy metals such as zinc, manganese, copper, arsenic, nickel, cobalt and iron were higher in chemically modified sand compared to pristine sand fix-bed column.


Keywords: Adsorption; ammonia; heavy metal; sand


Ali Awan, M., Qazi, I.A. & Khalid, I. 2003. Removal of heavy metal though adsorption using sand. Journal of Environmental Science 15: 413-416.

APHA, AWWA, WPCF. 1992. Standard Methods for the Examination of Water and Wastewater. 19th ed. Washington: American Public Health Association.

Azhar, A.H. & Aimi Shaza, C.A. 2012. Ammonia removal from an aqueous solution using chemical surface - modified sand. Health and the Environment Journal 3(2): 17-24.

Aziz, H.A., Adlan, M.N. & Ariffin, K.S. 2008. Heavy metals (Cd, Pb, Zn, Ni, Cu, and Cr(III)) removal from water in Malaysia: Post treatment by high quality limestone. Bioresource Technology 99(6): 1578-1583.

Benjamin, M.M., Ronald, S.S., Robert, P.B. & Thomas, B. 1996. Sorption and filtration of metals using iron-oxide-coated sand. Water Research 30: 2609-2620.

Camberato, J.J. 2001. Cation Exchange Capacity - Everything you want to know and much more. South Carolina Turfgrasss Foundation News: October-December.

Chapman, M.S. 1965. Cation exchange capacity in method of soil analysis. Series Agronomy Part 2. pp. 891-900.

Elongavan, R., Philips, L. & Chandraraj, K. 2008. Biosorption of chromium species by aquatic weeds. Journal of Hazardous Material 152: 100-112.

Environmental Quality Act (EQA). 2012. Lembaga Penyelidikan Undang-Undang. Akta Kualiti Alam Sekeliling 1974 (Akta 127). International Law Book Services.

Abdul Fattah Abu Bakar, Azhar Abdul Halim & Marlia Mohd Hanafiah. 2015. Optimization of coagulation-flocculation process for automotive wastewater treatment using response surface methodology. Nature Environment and Pollution Technology 14(3): 567-572.

Gupta, V.K. & Suhas. 2009. Application of low-cost adsorbents for dye removal - A review. Journal of Environmental Management 90(8): 2313-2342.

Halim, A.A., Han, K.K. & Hanafiah, M.M. 2015. Removal of methylene blue from dye wastewater using river sand by adsorption. Nature Environment and Pollution Technology 14(1): 89-94.

Halim, A.A., Hamidi Abdul Aziz, Megat Azmi Megat Johari & Kamar Shah Ariffin. 2010. Comparison study of ammonia and COD adsorption on zeolite, activated carbon and composite materials in landfill leachate treatment. Desalination 262: 31-35.

Han, X., Wang, W. & Ma, X. 2011. Adsorption characteristics of methylene blue onto low cost biomass material lotus leaf. Chemical Engineering Journal 171(1): 1-8.

Han, R.P., Lu, Z., Zuo, W.H., Wang, D.T., Jie, S. & Yang, J.J. 2006. Removal of copper(II) and lead(II) from aqueous solution by manganese oxide coated sand. Journal of Hazardous Material B137: 480-488.

He, X.W., Yang, H.M. & He, Y. 2010. Treatment of mine water high in ferum and manganese by modified manganese sand. Mining Sciences and Technology 20: 571-575.

Hsu, J.C., Lin, C.J., Liao, C.H. & Chen, S.T. 2008. Removal of As(V) and As(III) by reclaimed iron-oxide coated sands. Journal of Hazardous Materials 153: 817-826.

Karunarathne, H.D.S.S. & Amarasinghe, B.M.W.P.K. 2013. Fixed bed adsorption column studies for the removal of aqueous phenol from activated carbon prepared from sugarcane bagasse. Energy Procedia 34: 83-90.

Kavak, D. & Öztürk, N. 2004. Adsorption of boron from aqueous solution by sepirolite: II. Column studies. II. Illuslrararasi. Bor. Sempozyumu 23-25: 495-500.

Lancashire, R.J. 2002. Chromium Chemistry. http://wwwchem. courses/chromium.html. Accessed on 11 May 2012.

O’Reilly, A.J. 2000. Waste water treatment process selection: An industrial approach. Trans IChemE 78: 454-464.

Rhoades, J.D. 1982. Cation Exchange Capacity: Method of Soil Analysis Part 2. Edisi Ke-2. Madision, Wisconsin. Agronomy Monographs 9.

Sharma, Y.C., Srivastava, V., Weng, C.H. & Upadhyay, S.N. 2009. Removal of Cr(VI) from wastewater by adsorption on iron nanoparticles. The Canadian Journal of Chemical Engineering 87: 921-929.

Thomas, G.W. 1982. Exchangeable cations. In Methods of Soil Analysis. Part II, 2nd ed. edited by Page, A.L., Miller, R.H. & Keeney, D.R. Madison: America Society of Agronomy and Soil Science of America. pp. 159-165.

Thomas, H.C. 1944. Heterogeneous ion exchange in a flowing system. J. Am. Chem. Soc. 66(10): 1664-1666.

Tschapek, M., Wasowksi, C. & Falasca, S. 2007. Character and change in the hydrophilic properties of quartz sand. Journal of Plant Nutrition & Soil Sc. 146: 295-301.

Wang, Y.F., Lina, F. & Pang, W.Q. 2007. Ammonium exchange in aqueous solution using Chinese natural clinoptilolite and modified zeolite, J. Hazard. Mater. 142: 160-164.

Yoon, Y.H. & Nelson, J.H. 1984. Application of gas adsorption kinetics-II: A theoretical model for respirator catridge service life and its practical application. American Industrial Hygiene Association Journal 45: 509-516.

Zhang, C., Wang, Y. & Yan, X. 2006. Liquid-phase adsorption: Characterization and use of activated carbon prepared from diosgenin production residue. Colloids and Surfaces A: Physicochemical and Engineering Aspect 280: 9-16.



*Corresponding author; email: