Sains Malaysiana 45(1)(2016): 19–28

Artificial Neural Network Technique for Modeling of Groundwater Level in Langat

Basin, Malaysia

(Teknik Rangkaian Neuron Buatan untuk Pemodelan Paras Air Bawah Tanah di Lembangan Langat, Malaysia)

 

MAHMOUD KHAKI*, ISMAIL YUSOFF, NUR ISLAMI & NUR HAYATI HUSSIN

 

Department of Geology, University of Malaya, 50603 Kuala Lumpur, Malaysia

 

 

Received: 20 August 2014/Accepted: 8 November 2014

 

ABSTRACT

Forecasting of groundwater level variations is a significantly needed in groundwater resource management. Precise water level prediction assists in practical and optimal usage of water resources. The main objective of using an artificial neural network (ANN) was to investigate the feasibility of feed-forward, Elman and Cascade forward neural networks with different algorithms to estimate groundwater levels in the Langat Basin from 2007 to 2013. In order to examine the accuracy of monthly water level forecasts, effectiveness of the steepness coefficient in the sigmoid function of a developed ANN model was evaluated in this research. The performance of the models was evaluated using the mean squared error (MSE) and the correlation coefficient (R). The results indicated that the ANN technique was well suited for forecasting groundwater levels. All models developed had shown acceptable results. Based on the observation, the feed-forward neural network model optimized with the Levenberg-Marquardt algorithms showed the most beneficial results with the minimum MSE value of (0.048) and maximum R value of (0.839), obtained for simulation of groundwater levels. The present research conclusively showed the capability of ANNs to provide excellent estimation accuracy and valuable sensitivity analyses.

 

Keywords: Artificial neural network (ANN); groundwater level; simulation

 

ABSTRAK

Ramalan variasi paras air bawah tanah adalah sangat diperlukan dalam pengurusan sumber air bawah tanah. Ketepatan ramalan paras air dapat membantu penggunaan secara praktikal dan optimum sumber air tanah. Objektif utama penggunaan rangkaian neuron buatan (ANN) adalah untuk mengkaji kebolehan suap ke hadapan, Elman dan Cascade rangkaian neuron ke hadapan dengan algoritma yang berbeza dalam menentukan paras air tanah di Lembangan Langat dari 2007 hingga 2013. Untuk memastikan ketepatan ramalan paras air tanah bulanan, keberkesanan pekali kecuraman dalam fungsi sigmoid model ANN yang dibangunkan dinilai dalam kajian ini. Prestasi model dinilai berdasarkan purata ralat kuasa dua (MSE) dan pekali korelasi (R). Keputusan menunjukkan bahawa teknik ANN adalah sangat sesuai digunakan dalam meramal paras air bawah tanah. Semua model yang dibangunkan menunjukkan keputusan yang boleh diterima. Berdasarkan pemerhatian, model rangkaian neuron ke hadapan yang dioptimumkan dengan algoritma Levenberg-Marquardt menunjukkan keputusan yang paling bermanfaat dengan nilai minimum MSE (0.048) dan nilai maksimum R (0.839) diperoleh daripada simulasi paras air bawah tanah. Kajian ini secara muktamadnya menunjukkan keupayaan ANN dalam memberikan penganggaran ketepatan terbaik dan analisis sensitiviti bernilai.

 

Kata kunci: Paras air bawah tanah; rangkaian neuron buatan (ANN); simulasi

 

 

 

 

REFERENCES

 

Anctil, F., Perrin, C. & Andréassian, V. 2004. Impact of the length of observed records on the performance of ANN and of conceptual parsimonious rainfall-runoff forecasting models. Environmental Modelling & Software 19(4): 357-368.

ASCE Task C. 2000. Artificial neural networks in hydrology. I: Preliminary concepts. Journal of Hydrologic Engineering 5(2): 115-123.

Ashraf, M.A., Maah, M.J., Yusoff, I. & Mohamadreza Gharibreza. 2011. Proposed design of anaerobic wetland system for treatment of mining waste water at former tin mining catchmet. Scientific Research and Essays 6(28): 6001-6022.

Coulibaly, P., Anctil, F., Aravena, R. & Bobée, B. 2001. Artificial neural network modeling of water table depth fluctuations. Water Resources Research 37(4): 885-896.

Coulibaly, P., Anctil, F. & Bobee, B. 2000. Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. Journal of Hydrology 230(3): 244-257.

Elman, J.L. 1990. Finding structure in time. Cognitive Science 14(2): 179-211.

Fausset, L. 1994. Fundamentals of Neural Networks. New Jersey: Prentince Hall. p. 461.

Filik, U.B. & Kurban, M. 2007. A new approach for the short-term load forecasting with autoregressive and artificial neural network models. International Journal of Computational Intelligence Research 3(1): 66-71.

Govindaraju, R.S. & Rao, A.R. 2000. Artificial Neural Networks in Hydrology. Berlin, Heidelberg: Kluwer Academic Publishers. p. 332.

Hagan, M.T., Demuth, H.B. & Beale, M. 1996. Neural Network Design. Boston: PWS Publishing. p. 734.

Hagan, M.T. & Menhaj, M.B. 1994. Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks 5(6): 989-993.

Haykin, S. 1999. Neural Networks: A Comprehensive Foundation. 2nd ed. New Jersey: Prentice Hall. p. 823.

Hornik, K., Stinchcombe, M. & White, H. 1989. Multilayer feedforward networks are universal approximators. Neural Networks 2(5): 359-366.

Hussain, N.H., Yusoff, I., Alias, Y., Mohamad, S., Rahim, N.Y. & Ashraf, M.A. 2014. Ionic liquid as a medium to remove iron and other metal ions: A case study of the North Kelantan Aquifer, Malaysia. Environmental Earth Sciences 71(5): 2105-2113.

Karimi, S., Kisi, O., Shiri, J. & Makarynskyy, O. 2013. Neuro-fuzzy and neural network techniques for forecasting sea level in Darwin Harbor, Australia. Computers & Geosciences 52: 50-59.

Karmokar, B.C., Mahmud, M.P., Siddiquee, M.K., Nafi, K.W. & Kar, T.S. 2012, Touchless written English characters recognition using neural network. International Journal of Computer & Organization Trends 2(3): 80-84.

Khaki, M., Yusoff, I. & Islami, N. 2015. Application of the artificial neural network and neuro fuzzy system for assessment of groundwater quality. CLEAN - Soil Air Water 43: 551-560.

Kin, C.L., Ball, J.E. & Sharma, A. 2001. An application of artificial neural networks for rainfall forecasting. Mathematical and Computer Modelling 33(6): 683-693.

Lashkarbolooki, M. & Shafipour, Z.S. 2012. Trainable cascade-forward back-propagation network modeling of spearmint oil extraction in a packed bed using SC-CO2. The Journal of Supercritical Fluids 73: 108-115.

Maier, H.R. & Dandy, G.C. 2000. Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications. Environmental Modelling & Software 15(1): 101-124.

Maier, H.R. & Dandy, G.C. 1998. Understanding the behaviour and optimising the performance of back-propagation neural networks: An empirical study. Environmental Modelling & Software 13(2): 179-191.

Malaysian Meteorological Department (MMD). 2013. http:// www.met.gov.my.

Mishra, A., Kar, S. & Singh, V. 2007. Prioritizing structural management by quantifying the effect of land use and land cover on watershed runoff and sediment yield. Water Resources Management 21(11): 1899-1913.

Mohanty, S., Jha, M.K., Kumar, A. & Sudheer, K. 2010. Artificial neural network modeling for groundwater level forecasting in a River Island of Eastern India. Water Resources Management 24(9): 1845-1865.

Mohanty, S., Scholz, M. & Slater, M. 2002. Neural network simulation of the chemical oxygen demand reduction in a biological activated-carbon filter. Water and Environment Journal 16(1): 58-64.

Møller, M.F. 1993. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks 6(4): 525-533.

Riedmiller, M. & Braun, H. 1993. A direct adaptive method for faster backpropagation learning: The RPROP algorithm, paper presented at neural networks. IEEE International Conference. pp. 586-591.

Saghravani, S.R., Yusoff, I., Mustapha, S. & Saghravani, S.F. 2013. Estimating groundwater reharge using empirical method: A case study in the tropical zone. Sains Malaysiana 42(5): 553-560.

Selventhiran, U., Premaratne, H. & Sonnadara, D. 2012. An artificial neural network model for river flow forecasting. Paper presented at Proceedings of the Technical Sessions. 28: 15-21.

Singh, K.P., Basant, A., Malik, A. & Jain, G. 2009. Artificial neural network modeling of the river water quality - a case study. Ecological Modelling 220(6): 888-895.

Singh, R.M., Datta, B. & Jain, A. 2004. Identification of unknown groundwater pollution sources using artificial neural networks. Journal of Water Resources Planning and Management. 130(6): 506-514.

Sheela, K.G. & Deepa, S. 2013. Review on methods to fix number of hidden neurons in neural networks. Mathematical Problems in Engineering. Article ID 425740.

Talebizadeh, M., Morid, S., Ayyoubzadeh, S.A. & Ghasemzadeh, M. 2010. Uncertainty analysis in sediment load modeling using ANN and SWAT model. Water Resources Management 24(9): 1747-1761.

Te Chow, V., Maidment, D.R. & Mays, L.W. 1988. Applied Hydrology. Singapore: Tata McGraw-Hill Education. p. 572.

Verma, A. & Singh, T. 2013. Prediction of water quality from simple field parameters. Environmental Earth Sciences 69(3): 1-9.

Yusoff, I., Alias, Y., Yusof, M. & Ashraf, M.A. 2013. Assessment of pollutants migration at Ampar Tenang landfill site, Selangor, Malaysia. ScienceAsia 39: 392-409.

Zhang, Y., Pulliainen, J., Koponen, S. & Hallikainen, M. 2002. Application of an empirical neural network to surface water quality estimation in the Gulf of Finland using combined optical data and microwave data. Remote Sensing of Environment 81(2): 327-336.

Zulkifley, M.T.M., Ng, N.T., Raj, J.K., Hashim, R., Bakar, A.F.A., Paramanthan, S. & Ashraf, M.A. 2013. A review of the stabilization of tropical lowland peats. Bulletin of Engineering Geology and the Environment 73(3): 733-746.

 

 

*Corresponding author; email: mahmoud.khaki@gmail.com

 

 

 

previous