Sains Malaysiana 45(1)(2016): 29–34

Influence of Hydrolysis on Electrospinnability of Chitosan/Polyvinyl Alcohol Blends Solution and Fiber Diameter Distribution

(Pengaruh Hidrolisis pada Keupayaan Elektropemusingan Kitosan/Larutan Campuran Alkohol Polivinil dan Pengedaran Diameter Serabut)

 

 

UMMA HABIBA, AMALINA M. AFIFI*, BEE CHIN ANG & SEPEHR TALEBIAN

 

Materials Engineering Strategic Unit, Department of Mechanical Engineering , Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

Received: 19 July 2014/Accepted: 10 November 2014

 

 

ABSTRACT

 

In this study, the effect of hydrolysis on electrospinnability of chitosan/PVA blend solution has been investigated. Since crude chitosan (Mw=8.96105 g/mole, DD=40%) could not be dissolved even in concentrated acetic acid, it was hydrolyzed with 33.5 wt. % of NaOH at 90°C for 24 and 42 h. Hydrolyzed chitosan with two different time duration was analyzed using Fourier transform infrared (FTIR). Morphology of the product nanofiber was investigated by field emission scanning electron microscope (FESEM.). FTIR results showed that the hydrolysis did not destroy the molecular backbone of chitosan but increased the degree of deacetylation from 40 to 84% and 92% for 24 and 42 h hydrolysis time, respectively. FESEM image analysis was carried out and histogram was drawn to study on the distribution of fiber diameter. It showed that though the composition of chitosan/PVA remained the same, but mean fiber diameter, standard deviation and required applied voltage for electrospinning was smaller for the solution containing maximum time hydrolyzed chitosan. It indicated that longer hydrolysis time resulted in finer nanofiber which mostly attributed to lower required voltage for electrospinning. Threshold composition for defect free fiber is 50:50 and 60:40 of chitosan/PVA for 24 and 42 h hydrolysis, respectively. It meant that 42 h hydrolysis ensured the presence of more chitosan in the chitosan/PVA polymer blend because of smaller presence of amino group in chitosan molecule.

 

Keywords: Biodegradable polymers; chitosan; degree of deacetylation; electrospinning

 

ABSTRAK

Dalam kajian ini kesan hidrolisis ke atas larutan campuran keupayaan elektropemusingan kitosan /PVA telah dikaji. Kitosan (Mw=8.96 × 105 g/mol, DD=40%) tidak boleh larut walaupun dalam asid asetik pekat, ia telah dihidrolisiskan dengan 33.5 bt. % NaOH pada 900°C selama 24 dan 42 jam. Kitosan yang dihidrolisis dengan dua tempoh masa yang berbeza dianalisis menggunakan Transformasi Fourier Inframerah (FTIR). Morfologi nanoserabut produk itu dikaji mengikut bidang pelepasan mikroskop imbasan elektron (FESEM.). Keputusan FTIR menunjukkan proses hidrolisis tidak menjejaskan tulang belakang molekul kitosan tetapi meningkatkan tahap deasitelasi daripada 40 kepada 84% dan 92% untuk 24 dan 42 jam masa hidrolisis. FESEM analisis imej telah dijalankan dan graf histogram disertakan bagi mengkaji mengenai pengagihan diameter serabut. Ia menunjukkan bahawa walaupun komposisi kitosan/PVA kekal sama, tetapi min diameter serabut, sisihan piawai dan voltan yang diperlukan untuk proses elektropemusingan adalah lebih kecil untuk larutan kitosan yang mengandungi masa hidrolisis yang maksimum. Ia menunjukkan bahawa lebih lama masa hidrolisis akan menghasilkan nanoserabut yang lebih halus dengan hanya voltan yang lebih rendah diperlukan untuk proses elektropemusingan. Komposisi yang optimum untuk menghasilkan serat yang baik adalah 50:50 dan 60:40 kitosan/PVA masing-masing untuk 24 dan 42 jam hidrolisis. Ini bermakna bahawa 42 jam hidrolisis memastikan lebih banyak kitosan dalam kitosan/PVA polimer campuran kerana kehadiran kecil kumpulan amino dalam molekul kitosan.

 

Kata kunci: Biodegradasi polimer; kitosan elektropemusingan; tahap deasitelasi

 

 

REFERENCES

 

Baiwen Qi, Aixi Yu, Shaobo Zhu, Biao Chen & Yan Li. 2010. The preparation and cytocompatibility of injectable thermosensitive chitosan/poly (vinyl alcohol) hydrogel. Journal of Huazhong University of Science and Technology (Medical Sciences) 30: 89-93.

Bin Duan, Dong Cunhai, Xiaoyan Yuan & Kangde Yao. 2004. Electrospinning of chitosan solutions in acetic acid with poly (ethylene oxide). Journal of Biomaterials Science, Polymer Edition 15(6): 797-811.

Bognitzki, M., Czado, W., Frese, T., Schaper, A., Hellwig, M., Steinhart, M., Greiner, A. & Wendorff, J.H. 2001. Nanostructured fibers via electrospinning. Advanced Materials 13(1): 70-72.

Borchard, G. 2001. Chitosans for gene delivery. Advanced Drug Delivery Reviews 52(2): 145-150.

Brugnerotto, J., Lizardi, J., Goycoolea, F.M., Argüelles- Monal, W., Desbrieres, J. & Rinaudo, M. 2001. An infrared investigation in relation with chitin and chitosan characterization. Polymer 42(8): 3569-3580.

Fong, H., Chun, I. & Reneker, D.H. 1999. Beaded nanofibers formed during electrospinning. Polymer 40(16): 4585-4592.

Fong, H. & Reneker, D.H. 1999. Elastomeric nanofibers of styrene-butadiene-styrene triblock copolymer. Journal of Polymer Science Part B Polymer Physics 37(24): 3488- 3493.

Francis Suh, J-K. & Matthew, H.W.T. 2000. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: A review. Biomaterials 21(24): 2589- 2598.

Homayoni, H., Ravandi, S.A.H. & Valizadeh, M. 2009. Electrospinning of chitosan nanofibers: Processing optimization. Carbohydrate Polymers 77(3): 656-661.

Huang, Z-M., Zhang, Y-Z., Kotaki, M. & Ramakrishna, S. 2003. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology 63(15): 2223-2253.

Kaco, H., Zakaria, S., Razali, N.F., Chia, C.H., Zhang, Li. & Jani, S.M. 2014. Properties of cellulose hydrogel from kenaf core prepared via pre-cooled dissolving method. Sains Malaysiana 43(8): 1221-1229.

Klossner, R.R., Queen, H.A., Coughlin, A.J. & Krause, W.E. 2008. Correlation of chitosan’s rheological properties and its ability to electrospin. Biomacromolecules 9(10): 2947-2953.

Li, L. & Hsieh, Y-L. 2006. Chitosan bicomponent nanofibers and nanoporous fibers. Carbohydrate Research 341(3): 374-381.

Nurhidayatullaili Muhd Julkapli, Hazizan Md Akil & Zulkifli Ahmad. 2011. Preparation, properties and applications of chitosan-based biocomposites/blend materials: A review. Composite Interfaces 18(6): 449-507.

Pawlak, A. & Mucha, M. 2003. Thermogravimetric and FTIR studies of chitosan blends. Thermochimica Acta 396(1): 153-166.

Shauer, C.L. & Schiffman, J.D. 2008. Fibrous mats containing chitosan nanofibers. Google Patents No. US 20100216211 A1.

Yarin, A.L. 1993. Free Liquid Jets and Films: Hydrodynamics and Rheology. England: Longman Publishing Group.

Zong, X., Kim, K-S., Fang D-F., Ran, S., Hsiao, B.S. & Chu, B. 2002. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 43(16): 4403-4412.

 

 

*Corresponding author; email: amalina@um.edu.my

 

 

 

previous