Sains Malaysiana 45(2)(2016): 177–184

 

Profiling of Anti-Oxidative Enzymes and Lipid Peroxidation in Leaves of Salt Tolerant and Salt Sensitive Maize Hybrids under NaC1 and Cd Stress

(Pemprofilan Enzim Anti-Oksida dan Pengoksidaan Lipid dalam Daun Jagung Hibrid Toleransi

Garam dan Sensitif Garam di bawah Tekanan NaCl dan Cd)

 

Ghulam Hasan Abbasi1, Muhammad Ijaz*2, Javaid Akhtar3 & Muhammad Anwar-ul-Haq3, Moazzam Jamil1, Shafaqat Ali4, Rafiq Ahmad5 & Hammad Nawaz Khan6

 

 

1Department of Soil Science, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Pakistan

 

2College of Agriculture, Bahauddin Zakariya University, Bahadur Sub-campus Layyah, Pakistan

 

3Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan

 

4Department of Environmental Sciences, Government College University, Faisalabad, Pakistan

 

5Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan

 

6University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Pakistan

 

Received: 4 October 2014/Accepted: 10 July 2015

 

ABSTRACT

Effects of NaCl salinity and cadmium on the anti-oxidative activity of enzymes like superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), glutathione reductase (GR) and lipid peroxidation contents; malondialdehyde (MDA) were studied in two maize hybrids of different salt tolerance characteristics. An increase in the amount of lipid peroxidation indicated the oxidative stress induced by NaCl and Cd. The results also depicted that NaCl stress caused an increase in the activities of POD, SOD, CAT, APX and GR while cadmium stress increased the activities of POD, SOD and APX but showed no significant effect on CAT and GR in both the studied hybrids. The combined effect of salinity and cadmium on these parameters was higher than that of sole effect of either NaCl or Cd. It was also found that maize hybrid 26204 had better tolerance against both stresses with strong antioxidant system as compared to that of maize hybrid 8441. A comparison of the antioxidants and lipid peroxidation in two maize hybrids having varying level of NaCl and Cd stress tolerance corroborated the importance of reactive oxygen species (ROS) in defense against abiotic stresses.

Keywords: Antioxidant enzymes; cadmium; maize hybrid (Zea mays L.); NaCl; salinity

 

ABSTRAK

Kesan kemasinan NaCl dan kadmium terhadap aktiviti anti-oksida enzim seperti superoksida dismutase (SOD), katalase (CAT), peroksidase (POD), peroksidase askorbate (APX), glutation reduktase (GR) dan kandungan lipid peroksidaan; malondialdehid (MDA) telah dikaji dalam dua ciri berbeza toleransi garam jagung hibrid. Peningkatan dalam jumlah pengoksidaan lipid menunjukkan tekanan oksida aruhan NaCl dan Cd. Keputusan juga menunjukkan bahawa tekanan NaCl menyebabkan peningkatan dalam aktiviti POD, SOD, CAT, APX dan GR manakala tekanan kadmium meningkatkan aktiviti POD, SOD dan APX tetapi tiada kesan ketara ditunjukkan ke atas CAT dan GR dalam kedua-dua hibrid yang dikaji. Kesan gabungan kemasinan dan kadmium ke atas parameter ini adalah lebih tinggi berbanding dengan kesan tunggal sama ada NaCl atau Cd. Juga didapati bahawa jagung hibrid 26204 mempunyai toleransi yang lebih baik berbanding dengan kedua-dua tekanan dengan sistem antioksidan yang kuat berbanding dengan jagung hibrid 8441. Perbandingan antioksidan dan pengoksidaan lipid dalam dua jagung hibrid yang mempunyai pelbagai tahap toleransi tekanan NaCl dan Cd menyokong kepentingan spesies oksigen reaktif (ROS) dalam pertahanan terhadap tekanan abiotik.

Kata kunci: Enzim antioksida; jagung hibrid (Zea mays L.); kadmium; kemasinan; NaCl

 

REFERENCES

Aebi, H. 1984. Catalase in vitro. Methods in Enzymology 105: 121-126.

Aroca, R., Irigoyen, J.J. & Sanchez-Diaz, M. 2003. Drought enhances maize chilling tolerance. II. Photosynthetic traits and protective mechanisms against oxidative stress. Physiologia Plantarum 117: 540-549.

Asada, K. 1994. Production and action of active oxygen in photosynthetic tissues. In Causes of Photooxidative Stress and Amelioration of Defense System in Plants, edited by Foyer, C.H. & Mullineaux, P.M. Boca Raton, Florida: CRC Press. pp. 77-104.

Badawi, G.H., Yamauchi, Y., Shimada, E., Sasaki, R., Kawano, N., Tanaka, K. & Tanaka, K. 2004. Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts. Plant Science 166: 919-928.

Beauchamp, C. & Fridovich, I. 1971. Superoxide dismutase, improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry 44: 276-287.

Boscolo, P.R.S., Menossi, M. & Jorge, R.A. 2003. Aluminum-induced oxidative stress in maize. Phytochemistry 62: 181-189.

Bowler, C., Van Montagu, M. & Inz, E.D. 1992. Superoxide dismutase and stress tolerance. Annual Review of Plant Physiology & Plant Molecular Biology 43: 83-116.

Bray, E.A., Bailey-Serres, J. & Weretilnyk, E. 2000. Responses to abiotic stresses. In Biochemistry and Molecular Biology of Plants, edited by Buchanan, B.B., Gruissem, W. & Jones, R.L. New Jersey: John Wiley and Sons, Inc. pp. 1158-1203.

Dixit, V., Pandey, V. & Syam, R. 2001. Different anti-oxidative responses to cadmium in roots and leaves of pea Pisum sativum L., cv. Azad. Journal of Experimental Botany 52: 1101-1109.

Foyer, C.H. & Noctor, G. 2005. Oxidant and antioxidant signalling in plants, a reevaluation of the concept of oxidative stress in a physiological context. Plant Cell & Environment 28: 1056-1071.

Foyer, C.H. & Noctor, G. 2003. Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiologia Plantarum 119: 355-364.

Foyer, C.H. & Noctor, G. 2000. Oxygen processing in photosynthesis, regulation and signaling. New Phytologist 146: 359-388.

Garcia-Limones, C., Hervas, A., Navas-Cortes, J.A., Jimenez- Diaz, R.M. & Tena, M. 2002. Induction of an antioxidant enzyme system and other oxidative stress markers associated with compatible and incompatible interactions between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp. ciceris. Physiological & Molecular Plant Pathology 61: 325-337.

Hegedus, A., Erdei, S. & Horvath, G. 2001. Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedlings under cadmium stress. Plant Science 160: 1085- 1093.

Hernandez, J.A. & Alamansa, M.S. 2002. Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiologia Plantarum 115: 251-257.

Hernandez, J.A., Jimenez, A., Mullineaux, P. & Sevilla, F. 2000. Tolerance of pea Pisum sativum L. to long-term salt stress is associated with induction of antioxidant defences. Plant, Cell & Environment 23: 853-862.

Hodges, D.M., DeLong, J.M., Forney, C.F. & Prange, R.K. 1999. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207: 604-611.

Hossain, Z., Mandal, A.K.A., Datta, S.K. & Biswas, A.K. 2007. Development of NaCl tolerant line in Chrysanthemum morifolium Ramat. through shoot organogenesis of selected callus line. Journal of Biotechnology 129: 658-667.

Iannelli, M.A., Breusegem, F.V., Montagu, M.V., Inze, D. & Massacci, A. 1999. Tolerance to low temperature and paraquat-mediated oxidative stress in two maize genotypes. Journal of Experimental Botany 50: 523-532.

Krantev, A., Yordanova, R., Janda, T., Szalai, G. & Popova, L. 2008. Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants, Journal of Plant Physiology 165: 920-931.

Liang, Y., Chen, Q., Liu, Q., Zhang, W. & Ding, R. 2003. Exogenous silicon Si. increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). Journal of Plant Physiology 160: 1157-1164.

Lin, C.C. & Kao, C.H. 2000. Effect of NaCl stress on H2O2 metabolism in rice leaves. Plant Growth Regulation 30: 151-155.

Meloni, D.A., Oliva, M.A., Martinez, C.A. & Cambraia, J. 2003. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environmental & Experimental Botany 49: 69-76.

Misra, N. & Dwivedi, U.N. 2004. Genotypic difference in salinity tolerance of green gram cultivars. Plant Science 166: 1135-1142.

Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science 7: 405-410.

Mohammadkhani, N. & Heidari, R. 2007. Effects of drought stress on protective enzyme activities and lipid peroxidation in two maize cultivars. Pakistan Journal of Biological Sciences 10: 3835-3840.

Muhling, K.H. & Lauchli, A. 2003. Interaction of NaCl and Cd stress on compartmentation pattern of cations, antioxidant enzymes and proteins in leaves of two wheat genotypes differing in salt tolerance. Plant & Soil 253: 219-231.

Munns, R. 2002. Comparative physiology of salt and water stress. Plant, Cell & Environment 25: 239-250.

Nakano, Y. & Asada, K. 1981. Hydrogen peroxide is scavenged by ascorbate- specific peroxidase in spinach chloroplasts. Plant & Cell Physiology 22: 867-880.

Nawaz, K. & Ashraf, M. 2007. Improvement in salt tolerance of maize by exogenous application of glycinbetain, growth and water relations. Pakistan Journal of Botany 39: 1647-1653.

Noctor, G. & Foyer, C.H. 1998. Ascorbate and glutathione, keeping active oxygen under control. Annual Review of Plant Physiology & Plant Molecular Biology 49: 249-279.

Parida, A.K. & Das, A.B. 2005. Salt tolerance and salinity effects on plants: A review. Ecotoxicological & Environmetal Safety 60: 324-349.

Putter, J. 1974. Peroxidases. In Methods of Enzymatic Analysis, II, edited by Bergmeyer, H.U. New York: Acad. Press. pp. 685-690.

Qadir, S., Qureshi, M.I., Javed, S. & Abdin, M.Z. 2004. Genotypic variation in phytoremediation potential of Brassica juncea cultivars exposed to Cd stress. Plant Science 167: 1171-1181.

Reddy, A.R., Chaitanya, K.V., Jutur, P.P. & Sumithra, K. 2004. Differential anti-oxidative responses to water stress among five mulberry Morus alba L. cultivars. Environmental & Experimental Botany 52: 33-42.

Sandalio, L.M., Dalurzo, H.C., Gomez, M., Romero-Puertas, M.C. & Rio, L.A. 2001. Cadmium-induced changes in the growth and oxidative metabolism of pea plants. Journal of Experimental Botany 52: 2115-2126.

Schutzendubel, A., Schwanz, P., Teichmann, T., Gross, K., Langenfeld-Heyser, R. & Godbold, D.L. 2001. Cadmium induced changes in anti-oxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiology 127: 887-898.

Shah, K.H., Ritambhara, G.K., Verma, S. & Dubey, R.S. 2001. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Science 161: 1135-1144.

Shalata, A., Mittova, V., Volokita, M., Guy, M. & Tal, M. 2001. Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt dependent oxidative stress, the root anti-oxidative system. Physiologia Plantarum 112: 487-494.

Shalata, A. & Tal, M. 1998. The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt tolerant relative Lycopersicon pennellii. Physiologia Plantarum 104: 169-174.

Smeets, K., Cuypers, A., Lambrechts, A., Semane, B., Hoet, P., Van Laere, A. & Vangronsveld, J. 2005. Induction of oxidative stress and anti-oxidative mechanisms in Phaseolus vulgaris after Cd application. Plant Physiology & Biochemistry 43: 437-444.

Sudhakar, C., Lakshmi, A. & Giridarakumar, S. 2001. Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry Morus alba L. under NaCl salinity. Plant Science 161: 613-619.

Turkan, I. & Demiral, T. 2009. Recent developments in understanding salinity tolerance. Environmental & Experimental Botany 67: 2-9.

Vitoria, A.P., Lea, P.J. & Azevedo, R.A. 2001. Antioxidant enzymes responses to cadmium in radish tissues. Phytochemistry 57: 701-710.

Wang, M.E. & Zhou, Q.X. 2006. Effects of herbicide chlorimuron-ethyl on physiological mechanisms in wheat Triticum aestivum. Ecotoxicological & Environmetal Safety 64: 190-197.

Wu, F., Zhang, G. & Dominy, P. 2003. Four barley genotypes respond differently to cadmium, lipid peroxidation and activities of antioxidant capacity. Environmental & Experimental Botany 50: 67-78.

Xiong, L. & Zhu, J.K. 2002. Molecular and genetic aspects of plant responses to osmotic stress. Plant, Cell & Environment 25: 131-139.

Yan, B., Dai, Q., Liu, X., Huang, S. & Wang, Z. 1996. Flooding-induced membrane damage, lipid oxidation and activated oxygen generation in corn leaves. Plant & Soil 179: 261-268.

 

*Corresponding author; email: ijazhi@yahoo.com

 

 

 

previous