Sains Malaysiana 45(2)(2016): 279–287

 

Volumetric Properties and Leaching Effect of Asphalt Mixes with Electric Arc Furnace

Steel Slag and Copper Mine Tailings

(Sifat Isi Padu dan Kesan Larut-Lesap Bancuhan Asfalt dengan Sanga Keluli

Relau Arka Elektrik dan Tahi Lombong Kuprum)

 

Ebenezer Akin Oluwasola, Mohd Rosli Hainin*, Md. Maniruzzaman A. Aziz & M. Naquiddin M. Warid

 

Department of Geotechnics and Transportation, Faculty of Civil Engineering and

UTM Construction Research Center (CRC), Universiti Teknologi Malaysia (UTM),

81310 Skudai, Johor Darul Takzim, Malaysia

 

Received: 24 April 2014/Accepted: 8 July 2015


ABSTRACT

This study focuses on the potential of electric arc furnace (EAF) steel slag and copper mine tailings as asphalt paving materials with respect to issues of volumetric properties and leaching. In this study, four different asphalt mixes were investigated; each contained EAF steel slag and copper mine tailings of various proportions. Apart from the microstructure analysis of the materials, a toxicity characteristics leaching procedure (TCLP) test was conducted on both the mixes and the aggregates. All the mixes were evaluated by the following parameters: Voids in the mineral aggregates (VMA), voids in total mix (VTM), voids filled with asphalt (VFA), Marshall stability and flow and specific gravity. F-test ANNOVA was used to evaluate the degree of significance of the mixes with each of the evaluated standards. It was observed that the mixes containing either EAF steel slag or copper mine tailings or both gave better results than the control mix. In terms of the TCLP test, none of the detected hazardous elements exceeded the standard limits, which indicates the possibility of using them as construction materials.

Keywords: Asphalt; copper mine tailings; EAF steel slag; TCLP test; volumetric properties

 

ABSTRAK

Kajian ini memberi tumpuan kepada potensi sanga keluli relau arka elektrik (EAF) dan tahi lombong kuprum sebagai penurapan bahan asfalt yang berkaitan dengan sifat isi padu dan larut- lesap. Dalam kajian ini, empat bancuhan asfalt berbeza telah dikaji; setiap satu mengandungi sanga keluli EAF dan tahi lombong kuprum pada kadar berbeza. Selain daripada analisis mikrostruktur bahan, satu ujian prosedur ciri ketoksikan larut-lesap (TCLP) telah dijalankan ke atas bancuhan tersebut dan agregatnya. Semua bancuhan telah dinilai menggunakan parameter berikut: lompang dalam agregat galian (VMA), lompang dalam jumlah campuran (VTM), lompang yang dipenuhi dengan asfalt (VFA), kestabilan Marshall serta aliran dan graviti tertentu. Ujian-F ANNOVA digunakan untuk menilai tahap signifikasi bancuhan tersebut dengan setiap satu daripada piawai yang dinilai. Adalah diperhatikan bahawa bancuhan yang mengandungi sama ada sanga keluli EAF atau tahi lombong kuprum atau kedua-duanya memberikan keputusan yang lebih baik daripada campuran kawalan. Daripada segi ujian TCLP, tiada unsur berbahaya yang dikesan melebihi had piawai justeru menunjukkan kemungkinan untuk penggunaan bancuhan tersebut sebagai bahan binaan.

Kata kunci: Asfalt; sanga keluli EAF; sifat isi padu; tahi lombong kuprum; ujian TCLP

REFERENCES

Ahmari, S., Chen, R. & Zhang, L. 2012. Utilization of mine tailings as road base material. American Society of Civil Engineers, GeoCongress. pp. 3654-3661.

ASTM E 2090. 2012. Standard test method for size - Differentiated counting of particles and fibres released from cleanroom fibres using optical and scanning electron microscopy.

Brown, E., Hainin, M.R. & Cooley Jr., L.A. 2005. Determining minimum lift thickness for hot mix asphalt (HMA) mixtures. Journal of the Association of Asphalt Paving Technologists 74: 23-66.

Brown, E.R., Hainin, M.R., Cooley, A. & Hurley, G. 2004. Relationships of HMA in-place air voids, lift thickness, and permeability. Transportation Research Board, National Research Council.

Das, S.K., Kumar, S. & Ramachandrarao, P. 2000. Exploitation of iron ore tailing for the development of ceramic tiles. Waste Management 20: 725-729.

EPA, US. 1992. The toxicity characteristics leaching procedure. US Code of Federal Regulations, 40th ed.

Gordon, R.B. 2002. Production residues in copper technological cycles. Resourse Conservation and Recycling 36(2): 87-106.

Haritonovs, V., Zaumanis, M., Brencis, G. & Smirnovs, J. 2012. Performance characterization of bituminous mixtures with dolomite sand waste and BOF steel slag. J. Test. Eval. 40: 1-8.

Hossam, F.H., Amer Al Rawas, Abdel Wahid Hago, Ahmad, J., Al-Futuisi & Tala Al.-Sabqi. 2008. Investigating of permeability and leaching of hot mix asphalt concrete containing oil - contaminated soils. Construction and Building Materials 22: 1239-1246.

ICDD. 2006. International centre for Diffraction Data, Pennyslavia, USA.

Jabatan Kerja Raya Malaysia. 2008. Standard Specification for Road Works-section 4: Flexible Pavement. S4-58 - S4-69.

Montgomery, D. 2009. Design and Analysis of Experiments. 7th ed. Arizona: John Wiley & Sons, Inc.

Novo, L.A.B., Covelo, E.F & Gonzalez, L. 2013. Phytoremediation of amended copper mine tailings with Brassica juncea. International Journal of Minning, Reclamation and Environment 27(3): 215-226.

Obinna, O. & Ozgur, E. 2012. Copper tailings as a potential additive in concrete: Consistency, strength and toxic metal immobilization properties. Indian Journal of Engineering and Material Sciences 19: 79-86.

Oluwasola, E.A., Hainin, M.R., Aziz, M.M.A., Singh, S. & Singh, L.M. 2015a. Effect of aging on the resilient modulus of stone mastic asphalt incorporating electric arc furnace steel slag and copper mine tailings. In InCIEC 2014. Singapore: Springer. pp. 1199-1208.

Oluwasola, E.A., Hainin, M.R. & Aziz, M.M.A. 2015b. Evaluation of asphalt mixtures incorporating electric arc furnace steel slag and copper mine tailings for road construction. Transportation Geotechnics 2: 47-55.

Pasetto, M. & Baldo, N. 2012. Performance comparative analysis of stone mastic asphalts with electric arc furnace steel slag: A laboratory evaluation. Materials and Structures 45(3): 411-424.

Roberts, F.L., Kandhal, P.S., Brown, E.R., Kim, Y.R., Lee Dad-Yinn & Kennedy, T. 2009. Hot Mix Asphalt Materials, Mixture, Design, and Construction. 3rd ed. Lanham, Maryland: NAPA Research and Education Foundation.

Singh, M., Kumar, P. & Maurya, M.R. 2013. Strength characteristics of SBS modified asphalt mixes with various aggregates. Construction and Building Materials 41: 815- 823.

Sofilic, T., Mladenovic, M. & Sofilic, U. 2011. Defining of EAF steel slag application possibilities in asphalt mixture production. J. Environ. Eng. Landsc. Manag. 19: 148-157.

The Asphalt Institute (ASI). 1984. Mix design methods for asphalt concrete and other hot mix types, MS - 2.

United State Geological Survey, USGS. 2014. Industrial solid waste available at http://minerals.usgs.gov/minerals/pubs/ commodity/iron&steel.

Wang, Q., Yan, P. & Feng, J. 2011. A discussion on improving hydration activity of steel slag by altering its mineral compositions. Journal of Hazardous Materials 186: 1070- 1075.

Widojoko, W. 2013. Evaluation the use of tailings as a filler in asphalt concrete-wearing course based on results of laboratory tests to the indonesian specification for hot - mix asphalt year 2010. Advanced Materials Research 723: 328-336.

 

*Corresponding author; email: mrosli@utm.my

 

 

 

previous