Sains Malaysiana 45(3)(2016): 467–476

Removal of Heavy Metals and Production of Bioethanol by Green Alga Scenedesmus obliquus Grown in Different Concentrations of Wastewater

(Penyingkiran Logam Berat dan Pengeluaran Bioetanol oleh Alga Hijau Scenedesmus obliquus Hidup dalam Pelbagai Kepekatan Air Sisa)

 

RAGAA A. HAMOUDA1* DALIA S. YEHEIA1, MERVAT H. HUSSEIN2 & HANAFY A. HAMZAH1

 

1Microbial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute

University of Sadat City, Egypt

 

2Botany Department, Faculty of Science, Mansoura University, Egypt

 

Received: 05 July 2015/Accepted: 24 September 2015

 

ABSTRACT

Algae have recently received a lot of attention as a new biomass source for the production of renewable energy and an important bioremediation agent. This study was carried out to evaluate the potential of green algae Scenedesmus obliquus grow in different concentrations of wastewater and the improvement of cultivation conditions to produce biomass rich in sugar to produce bioethanol by fermentation processes. The highest sugar content of S. obliquus biomass was recorded for algae cultivated with 40 and 85% wastewater after 9 days under aeration condition with dark and light duration (44.5%). It was found that the highest removal efficiency of BOD and COD were 18% for S. obliquus grown under aeration condition. The highest ethanol efficiency of S. obliquus biomass hydrolysate was 20.33% at 4th day. The best condition of S. obliquus to grow efficiently was under aeration with light and dark durations, where it has high efficiency to remove heavy metals from wastewater in this condition.

 

Keywords: Bioethanol; culture condition; fermentation; heavy metals; Scenedesmus obliquus; wastewater treatments

 

ABSTRAK

Alga pada masa ini telah mendapat perhatian sebagai sumber biojisim baru untuk penghasilan tenaga boleh baharu dan sebagai agen penting biopemulihan. Penyelidikan ini dijalankan untuk menilai potensi alga hijau Scenedesmus obliquus membesar dalam pelbagai kepekatan air sisa dan dalam penambahbaikan keadaan penanaman untuk menghasilkan biojisim yang kaya dengan gula untuk menghasilkan bioetanol melalui proses penapaian. Kandungan gula tertinggi daripada biojisim S. obliquus direkodkan sebagai alga yang ditanam menggunakan 40 dan 85% air sisa selepas 9 hari di bawah keadaan pengudaraan dengan tempoh gelap dan terang (44.5%). Didapati bahawa kecekapan penyingkiran tertinggi BOD dan COD adalah 18% untuk S. obliquus membesar di bawah keadaan pengudaraan. Kecekapan tertinggi etanol hidrolisat biojisim S. obliquus adalah 20.33% pada hari ke-4. Keadaan terbaik untuk S. obliquus membesar dengan cekap adalah di bawah keadaan pengudaraan dengan tempoh terang dan gelap dan mempunyai kecekapan tinggi untuk membuang logam berat daripada buangan dalam keadaan.

 

Kata kunci: Bioetanol; keadaan budaya; logam berat; penapaian; rawatan air kumbahan; Scenedesmus obliquus

REFERENCES

Abdel Hameed, M.S. 2007. Effect of algal density in bead, bead size and bead concentrations on wastewater nutrient removal. African Journal of Biotechnology 6: 1185-1191.

An, J.Y., Sim, S.J. & Kim, B.W. 2003. Hydrocarbon production from secondarily treated piggery wastewater by green alga Botryococcus braunii. Journal of Applied Phycology 15: 185-191.

Andrew, D.E., Lenore, S.C., Engene, W.R. & Arnold, E.G. 2005. Standard Methods for the Examination of Water and Wastewater. 21st ed. pp. 6010-6651.

APHA, AWWA & WEF. 2005. Standard Methods for the Examination of Water and Wastewater. 21st ed. Washington, DC, USA: APHA. pp. 258-259.

Aksu, Z. & Kustal, T.A. 1991. Bioseparation process for removing lead ions from wastewater by using Chlorella vulgaris. Journal of Chemical Technology and Biotechnology 52: 109-118.

Atlas, R.M. & Park, L.C. 1993. Handbook of Microbiological Media. Boca Raton, Fl.: CRC Press. p. 1079.

Binder, J.B. & Raines, R.T. 2010. Fermentable sugars by chemical hydroysis of biomass. Proceeding of the National Academy of Sciences of the United States of America 107(10): 4516-4521.

Bouterfas, R., Belkoura, M. & Dauta, A. 2006. The effects of irradiance and photoperiod on the growth rate of three freshwater green algae isolated from a eutrophic lake. Limnetica 25: 647-656.

Brennan, L. & Owende, P. 2010. Biofuels from Microalgae - a review of technologies for production, processing and extraction of biofuels and co-products. Renewable and Sustainable Energy Review 14: 557-577.

Caputi, A., Ueda, J.M. & Brown, T. 1968. Spectrophotometric determination of chromic complex formed during oxidation of alcohol. American Journal of Enology and Viticulture 19: 160-165.

Caylak, B. & Sukan, F.V. 1998. Comparison of different production processes for bioethanol. Turkish Journal of Chemistry 22: 351-359.

Chen, B., Huang, Q., Lin, X., Shi, Q. & Wu, S. 1998. Accumulation of Ag, Cd, Co, Cu, Hg, Ni and Pb in Pavlova viridis Tseng (Haptophyceae). Journal of Applied Phycology 10(4): 371-376.

Craggs, R.J., Smith, V.J. & McAuley, P.J. 1995. Wastewater nutrient removal by Deutsche. Science Technology 31: 151-160.

Deutsche, E.Z. & Abwasser, W. 1960. Schlammuntersuchung. 3rd ed. Weinheim: Springer-Verlag.

Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. & Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28: 350-356.

Gates, W.E. & Borchardt, J.A. 1964. Nitrogen and phosphorus extraction from domestic wastewater treatment plant effluents by controlled algal culture. Journal of the Water Pollution Control Federation 36: 443-462.

Gupta, V.K. & Rastogi, A. 2008. Biosorption of lead from aqueous solutions by green algae Spirogyra species: Kinetics and equilibrium studies. Journal of Hazardous Materials 152: 407-414.

Hodaifa, G., Martinez, M.E., Ơrpez, R. & Snchez, S. 2010. Influence of hydrodynamic stress in the growth of Scenedesmus obliquus using a culture medium based on olive-mill wastewater. Journal of Chemical Engineering Processing: Process Intensification 49: 1161-1168.

Hodaifa, G., Martínez, M.E. & Sánchez, S. 2009. Daily doses of light in relation to the growth of Scenedesmus obliquus in diluted three-phase olive mill wastewater. Journal of Chemical Technology and Biotechnology 84: 1550-1558.

Hodaifa, G., Martínez, M.E. & Sánchez, S. 2008. Use of industrial wastewater from olive-oil extraction for biomass production of Scenedesmus obliquus. Bioresource Technology 99: 1111- 1117.

Krishnaveni, S., Balasubramanian, T. & Sadasivam, S. 1984. Sugar distribution in sweet stalk sorghum. Food Chemistry 15: 229-232.

Larsdotter, K. 2006. Wastewater treatment with microalgae: A literature review. Journal of Water Management and Research 62: 31-38.

Lau, P.S., Tam, N.F.Y. & Wong, Y.S. 1998. Effect of Carrageenan immobilization on the physiological activities of Chlorella vulgaris. Bioresourse Technology 63: 115-121.

Lau, P.S., Tam, N.F.Y. & Wong, Y.S. 1997. Wastewater nutrients (N and P) removal by carrageenan and alginate immobilized Chlorella vulgaris. Bioresourse Technology 18: 945-951.

Laval, D. & Mazliak, P.M. 1995. Nutrition Etmétabolisme (Physiologie végétale). Hermann (ed). Paris. p. 539.

Lee, K. & Lee, C.G. 2001. Effect of light/dark cycles on wastewater treatment by microalgae. Biotechnology Bioprocess Engineering Journal 6: 194-199.

Markou, G., Angelidaki, I., Nerantzis, E. & Georgakakis, D. 2013. Bioethanol production by carbohydrate-enriched biomass of Arthrospira (Spirulina) Platensis Energies 6: 3937-3950.

Martinez, M.E., Sanchez, S., Jimenez, J.M., Yousfi, F.E. & Munoz, L. 2000. Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresource Technology 73: 263-272.

Mercado, J.M., Sánchez-Saavedra, M.P., Correa-Reyes, J.G., Lubián, L., Montero, O. & Figueroa, F.L. 2004. Blue light effect on light absorption characteristics and photosynthesis of five benthic diatom species. Aquatic Botany 78: 265-277.

Miranda, J.R., Passarinho, P.C. & Gouveia, L.M. 2012a. Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production. Bioresource Technology 104: 342-348.

Miranda, J.R., Passarinho, P.C. & Gouveia, L.M. 2012b. Bioethanol production from Scenedesmus obliquus sugars: The influence of photobioreactors and culture conditions on biomass production. Journal of Applied Microbiology Biotechnology 96: 555-564.

Nguyen, Thi Hong Minh & Vu, Van Hanh. 2012. Bioethanol production from marine algae biomass: Prospect and troubles. Journal of Vietnamese Environment 3(1): 25-29.

Oswald, W.J. 2003. My sixty years in applied algology. Journal of Applied Phycology 15: 99-106.

Picot, B., El-Halouani, H., Casellas, C., Moresidik, S. & Bontoux, J. 1991. Nutrient removal by high rate pond system in a Mediterranean climate (France). Water Science Technology 23: 1535-1541.

Richmond, A. & Grobbelaar, J.U. 1986. Factors affecting the output rate of Spirulina platensis with reference to mass cultivation. Biomass 10: 253-264.

Rippka, R., Deruelles, J., Waterbury, J., Herdman, M. & Stanier, R. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology 111: 1-61.

Rocha, J.M.S., Garcia, J.E.C. & Henriques, M.H.F. 2003. Growth aspects of the marine microalga Nannochloropsis gaditana. Bimolecular Engineering 20: 237- 242.

Seyfabadi, J., Ramezanpour & Amini, K.Z. 2011. Protein, fatty acid, and pigment content of Chlorella vulgaris under different light regimes. Journal of Applied Phycology 23: 721-726.

Sivasubramanian, V. 2009. Current status of research on algal bio-fuels in India. Journal Algal Biomass Utilization 1: 1-8.

Staniszewski, M., Kujawski, W. & Lewandowska, M. 2009. Semi-continuous ethanol production in bioreactor from whey with co-immobilized enzyme and yeast cells followed by pervaporative recovery of product – Kinetic model predictions considering glucose repression. Journal of Food Engineering 91: 240-249.

Stengel, E. 1970. Anlagen typen and Verfahren der technischen Algenmassen production. Berichte der Deutschen Botanischen Gesellschaft 83: 589-606.

Travieso, L., Benítez, F., Sánchez, E., Borja, R., León, M., Raposo, F. & Rincón, B. 2008. Assessment of a microalgae pond for post-treatment of the effluent from an anaerobic fixed bed reactor treating distillery wastewater. Environmental Technology 29: 985-992.

Ukeles, R. 1971. Nutritional requirements in shellfish culture. In: Proceedings of the Conference on Artificial Propagation of Commercially Valuable Shellfish, Oct. 22-23, 1969. College of Marine Studies, University of Delaware, Newark, Delaware.

Venkataraman, G.S. 1969. Algal inoculation in rice fields. In Nitrogen and Rice, edited by IRRI. International Rice Research Institute, USA. pp: 311-321.

Weidang, A., Shuang-Sheng, G., Yong-Kang, T. & Li-Feng, Q. 2008. Study of selecting on light source used for Micro-algae cultivation in space. 37th, COSPAR Scientific Assembly.

Wetherell, D.F. 1961. Culture of fresh water algae in enriched natural seawater. Physiologia Plantarum 14(1): 1-6.

Wijffels, R.H. & Barbosa, M.J. 2010. An outlook on microalgal biofuels. Science 329: 796-799.

Wu, F.C., Tseng, R.L. & Juang, R.S. 1999. Role of pH in metal adsorption for aqueous solutions containing chelating agents on chitosan. Industrial & Engineering Chemistry Research 38(1): 270-275.

Yeh, R.S., Wang, Y.Y. & Wan, C.C. 1995. Removal of Cu-EDTA compounds via electrochemical process with coagulation. Water Research 29: 597-599.

 

*Corresponding author; email: ragaahom@yahoo.com

 

 

 

 

 

 

previous