Sains Malaysiana 45(6)(2016): 969–976

 

Aerobic Fermentation of Saccharomeyes cerevisae in a Miniature Bioreactor Made of Low Cost Poly(Methylmethacrylate) (PMMA) and Poly(Dimethylsiloxane) (PDMS) Polymers

(Fermentasi Aerobik Saccharomeyes cerevisae dalam Bioreaktor Mini Dihasilkan daripada Polimer Poli(Metilmetakrilat) (PMMA) dan Poli(Dimetilsiloksana) (PDMS) Kos Rendah)

 

 

HAZWAN HALIMOON1, ABDUL RASHID HUSSAIN2, ABBAS KOUZANI3 & MUHD NAZRUL HISHAM ZAINAL ALAM3,4*

 

1Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor Darul Takzim, Malaysia

 

2Department of Control and Mechatronic Engineering, Faculty of Electrical Engineering

Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor Darul Takzim, Malaysia

 

3School of Engineering, Deakin University, Waurn Ponds, Victoria 3216, Australia

 

4Process Systems Engineering Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor Darul Takzim, Malaysia

 

 

Received: 3 September 2015/Accepted: 8 December 2016

 

 

ABSTRACT

In this paper, a minibioreactor platform made of low cost polymers is presented. The minibioreactor prototype was designed as an alternative solution for carrying out microbial fermentation experiments in laboratory. The minibioreactor prototype has a working volume of 1.5 mL and was fabricated from poly(methylmethacrylate) (PMMA) and poly(dimethylsiloxane) (PDMS) polymers. Cell density was measured online whilst agitation rates and the temperature of the reactor content can be tightly controlled to desired set-point values. As proof-of-concept, various S. cerevisae fermentation experiments were conducted. In every experiment, the minibioreactor operated stably for the entire length of operation which was nearly 40 h with very minimal volume loss i.e. about 2.8 μL·h-1 at 37ºC. The minibioreactor has the maximum oxygen transfer rate (OTR) of 16.6 mmol·L-1·h-1 under the agitation rate of 300 rpm. Under these conditions, cell specific growth rate as high as 0.291 h-1 was obtained. The experimental data in the minibioreactor operation was also reproducible using shake flask where similar growth profiles were attained under a similar growth conditions.

 

Keywords: Bioreactor; miniature bioreactors; online UV detection; scale down; yeast fermentation

 

 

ABSTRAK

 

Dalam kertas ini, minibioreaktor yang dihasilkan daripada polimer berkos rendah telah dibincangkan. Prototip minibioreaktor ini direka bentuk sebagai alternatif dalam menjalankan eksperimen fermentasi di dalam makmal. Prototip minibioreaktor ini mempunyai isi padu kerja sebanyak 1.5 mL dan difabrikasi daripada polimer poli(metilmetakrilat) (PMMA) dan poli(dimetilsiloksana) (PDMS). Ketumpatan sel diukur secara dalam talian sementara kadar pengadukan dan suhu kandungan reaktor boleh dikawal pada nilai yang ditentukan. Untuk membuktikan konsep, beberapa eksperimen fermentasi S. cerevisae telah dijalankan. Pada setiap eksperimen, minibioreaktor beroperasi secara stabil selama eksperimen berlangsung hampir 40 jam dengan kehilangan isi padu yang minimum iaitu sebanyak 2.8 μL·h-1 pada 37ºC. Minibioreaktor ini mempunyai kadar pemindahan oksigen maksimum 16.6 mmol·L-1·h-1 pada kadar pengadukan 300 rpm. Pada keadaan ini, kadar pertumbuhan sel khusus setinggi 0.291 h-1 diperoleh. Data eksperimen dalam operasi minibioreaktor juga boleh diperoleh menggunakan kelalang goncang dengan profil pertumbuhan yang sama dicapai pada keadaan pertumbuhan yang serupa.

 

Kata kunci: Bioreaktor; bioreaktor bersaiz mini; fermentasi yis; menskalakan ke bawah; pengesanan UV dalam talian

 

REFERENCES

 

Almeida, J.R.M., Modig, T., Petersson, A., Hähn-Hägerdal, B., Lidén, G. & GorwaGrauslund, M.F. 2007. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. Journal of Chemical Technology and Biotechnology 82: 340-349.

Becker, H. & Gaertner, C. 2008. Polymer microfabrication methods for microfluidic analytical applications. Analytical and Bioanalytical Chemistry 390(1): 89-111.

Betts, J.I. & Baganz, F. 2006. Miniature bioreactors: Current practices and future opportunities. Microbial Cell Factories 5: (21) doi: 10.1186/1475-2859-5-21.

Boccazzi, P., Zhang, Z., Kurosawa, K., Szita, N., Bhattacharya, S., Jensen, K.F. & Sinskey, A.J. 2006. Differential gene expression profiles and realtime measurements of growth parameters in Saccharomyces cerevisiae grown in microliter-scale bioreactors equipped with internal stirring. Biotechnology Progress 22: 710-717.

Duetz, A.W., Ruedi, L., Hermann, R., O’Connor, K., Bűchs, J. & Witholt, B. 2000. Methods for intense aeration, growth, storage and replication of bacterial straints in Microtiter plates. Applied and Environmental Microbiology 66: 2641-2646.

Gill, N.K., Appleton, M., Baganz, F. & Lye, G.J. 2008. Design and characterisation of a miniature stirred bioreactor system for parallel microbial fermentations. Biochemical Engineering Journal 39: 164-176.

Lee, H.L., Bocazzi, P., Ram, R.J. & Sinskey, A.J. 2006. Microbioreactor arrays with integrated mixers and fluid injectors for high throughput experimentation with pH and dissolved oxygen control. Lab on a Chip 6: 1229-1235.

Lin, Y., Zhang, W., Li, C., Sakakibara, K., Tanaka, S. & Kong, H. 2012. Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742. Biomass and Bioenergy 47: 395-401.

Linek, V. & Vacek, V. 1981. Chemical engineering use of catalyzed sulfite oxidation kinetics for the determination of mass transfer characteristics of gas-liquid contactors. Chemical Engineering Science 36: 1747-1768.

Ortiz-Mu˜niz, B., Carvajal-Zarrabal, O., Torrestiana-Sanchez, B. & Aguilar-Uscanga, M.G. 2010. Kinetic study on ethanol production using Saccharomyces cerevisiae ITV-01 yeast isolated from sugar cane molasses. Journal of Chemical Technology and Biotechnology 85: 1361-1367.

Perozziello, G., Bundgaard, F. & Geschke, O. 2008. Fluidic interconnections for microfluidic systems: A new integrated fluidic interconnection allowing plug’n’play functionality. Sensors and Actuators-B: Chemical 130: 947-953.

Prasertwasu, S., Khumsupan, D., Komolwanich, T., Chaisuwan, T., Luengnaruemitchai, A. & Wongkasemjit, S. 2014. Efficient process for ethanol production from Thai Mission grass (Pennisetum polystachion). Bioresource Technology 163: 152-159.

Saqib, A.A.N. & Whitney, P.J. 2011. Differential behaviour of the dinitrosalicylic acid (DNS) reagent towards mono- and di-saccharide sugars. Short communication. Biomass and Bioenergy 35: 4748-4750.

Schäpper, D., Stocks, S.M., Szita, N., Lantz, A.E. & Gernaey, K.V. 2010. Development of a single-use microbioreactor for cultivation of microorganisms. Chemical Engineering Journal 160: 891-898.

Schäpper, D., Zainal Alam, M.N.H., Szita, N., Lantz, A.E. & Gernaey, K.V. 2009. Application of microbioreactors in fermentation process development: A review. Analytical and Bioanalytical Chemistry 395(3): 679-695.

Szita, N., Boccazzi, P., Zhang, Z.Y., Boyle, P., Sinskey, A.J. & Jensen, K.F. 2005. Development of a multiplexed microbioreactor system for high-throughput bioprocessing. Lab on a Chip 5(8): 819-826.

Shuler, M.L. & Kargi, F. 2002. Bioprocess Engineering: Basic Concepts. 2nd ed. New Jersey: Prentice Hall.

Stanbury, P.F., Hall, S. & Whitaker, A. 1999. Principles of Fermentation Technology. 2nd ed. UK: Butterworth- Heinemann.

Tesfaw, A. & Assefa, F. 2014. Current trends in bioethanol production by Saccharomyces cerevisiae: Substrate, inhibitor reduction, growth variables, coculture, and immobilization. International Scholarly Research Notices. Hindawi Publishing Corporation, Article ID 532852. http://dx.doi.org/10.1155/2014/532852.

Wee, N.K., Hamid, A.A., Kalil, A.S. & Wan Yusoff, W.M. 2010. Kesan pengudaraan dan pencairan ke atas penghasilan bioetanol secara selanjar dalam bioreaktor padat oleh Saccharomyces cerevisiae. Sains Malaysiana 39(1): 141-144.

Zainal Alam, M.N.H., Schäpper, D. & Gernaey, K.V. 2010. Embedded resistance wire as heating element for temperature control in microbioreactors. Journal of Micromechanics and Microengineering. 20: 055014. doi:10.1088/0960- 1317/20/5/055014.

Zanzotto, A., Szita, N., Boccazzi, P., Lessard, P., Sinskey, A.J. & Jensen, K.F. 2004. Membrane-aerated microbioreactor for high-throughput bioprocessing. Biotechnoogy &. Bioengineering 87: 243-254.

Zhang, C. & Xing, D. 2007. Miniaturized PCR chips for nucleic acid amplification and analysis: Latest advances and future trends. Nucleic Acid Research 35(13): 4223-4237.

 

 

*Corresponding author; email: nazrul@cheme.utm.my

 

 

previous