Sains Malaysiana 45(6)(2016): 989–998

Block Backward Differentiation Formulas for Solving First Order Fuzzy Differential Equations under Generalized Differentiability

(Formula Blok Pembezaan Kebelakang bagi Menyelesaikan Persamaan Pembezaan Kabur Peringkat Pertama di bawah Kebolehbezaan Umum)

ISKANDAR SHAH MOHD ZAWAWI1 & ZARINA BIBI IBRAHIM2*

1Department of Mathematicsm Faculty of Sciencem Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia

2Institute for Mathematical Research, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia

Received: 7 April 2015/Accepted: 5 January 2015

ABSTRACT

In this paper, the fully implicit 2-point block backward differentiation formula and diagonally implicit 2-point block backward differentiation formula were developed under the interpretation of generalized differentiability concept for solving first order fuzzy differential equations. Some fuzzy initial value problems were tested in order to demonstrate the performance of the developed methods. The approximated solutions for both methods were in good agreement with the exact solutions. The numerical results showed that the diagonally implicit method outperforms the fully implicit method in term of accuracy.

Keywords: Block; diagonally; fuzzy; implicit

ABSTRAK

Dalam kertas ini, formula 2-titik blok pembezaan kebelakang tersirat penuh dan formula 2-titik blok pembezaan kebelakang tersirat pepenjuru dibangunkan di bawah konsep kebolehbezaan umum bagi menyelesaikan persamaan pembezaan kabur peringkat pertama. Beberapa masalah-masalah nilai awal kabur diuji untuk menunjukkan prestasi kaedah yang dibangunkan. Penyelesaian yang dianggarkan bagi kedua-dua kaedah adalah dalam persetujuan yang baik dengan penyelesaian tepat. Keputusan berangka menunjukkan kaedah tersirat pepenjuru mengatasi kaedah tersirat penuh dalam terma kejituan.

Kata kunci: Blok; kabur; pepenjuru; tersirat

REFERENCES

Abbasbandi, S. & Viranloo, T.A. 2002. Numerical solutions of fuzzy differential equations by Taylor method. Comp. Method in Applied Mathematics 2: 113-124.

Ahmad, M.Z. & Hasan, M K. 2011. A new fuzzy version of Euler’s method for solving differential equations with fuzzy initial values. Sains Malaysiana 40(6): 651-657.

Balooch Shahryari, M.R. & Salahshour, S. 2012. Improved predictor corrector method for solving fuzzy differential equations under generalized differentiability. Journal of Fuzzy Set Valued Analysis 2012: 1-16.

Bede, B., Bhaskar, T.G. & Lakshmikantham, V. 2007. Perspective of fuzzy initial value problems. Communications in Applied Analysis 11: 339-358.

Bede, B. & Gal, S.G. 2005. Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Sets and Systems 151: 581-599.

Chalco-Cano, Y. & Roman-Flores, H. 2008. On new solutions of fuzzy differential equations. Chaos, Solitons and Fractals 38: 112-119.

Ghazanfari, B. & Shakerami, A. 2012. Numerical solutions of fuzzy differential equations by extended Runge-Kutta-like formulae of order four. Fuzzy Sets and Systems 189(1): 74-91.

Ibrahim, Z.B., Suleiman, M.B. & Nasir, N.A.A.M. 2011. Convergence of the 2-point block backward differentiation formulas. Applied Mathematical Sciences 5(70): 3473-3480.

Ibrahim, Z.B., Suleiman, M.B. & Othman, K.I. 2008. Fixed coefficients block backward differentiation formulas for the numerical solution of stiff ordinary differential equations. European Journal of Scientific Research 21(3): 508-520.

Ibrahim, Z.B., Suleiman, M.B. & Othman, K.I. 2007. Implicit r-point block backward differentiation formula for solving first order stiff odes. Applied Mathematics and Computation 186: 558-565.

Ibrahim, Z.B., Johari, R. & Ismail, F. 2003. On the stability of block backward differentiation formulae. Matematika 19(2): 83-89.

Mondal, S.P. & Roy, T.K. 2013. First order linear homogeneous ordinary differential equation in fuzzy environment based on laplace transform. Journal of Fuzzy Set Valued Analysis 2013: 1-18.

Puri, M.L. & Ralescu, D. 1983. Differential for fuzzy function. J. Math. Anal. Appl. 91: 552-558.

Shokri, J. 2007. Numerical solution of fuzzy differential equations. Applied Mathematical Sciences 1: 2231-2246.

Zawawi, I.S.M., Ibrahim, Z.B., Ismail, F. & Majid, Z.A. 2012. Diagonally implicit block backward differentiation formulas for solving ordinary differential equations. International Journal of Mathematics and Mathematical Sciences Article ID 767328.

*Corresponding author: zarinabb@upm.edu.my

 content