Sains Malaysiana 45(7)(2016): 1035–1040

 

Antioxidative Responses of Cocos nucifera against Infestation by the Red Palm Weevil (RPW), Rhynchophorus ferrugineus, a New Invasive Coconut Pest in Malaysia

(Tindak Balas Antioksida oleh Cocos nucifera terhadap Serangan Kumbang Merah Palma (RPW), Rhynchophorus ferrugineus, Serangga Perosak Invasif Baharu Pokok Kelapa di Malaysia)

 

 

NORHAYATI, Y.*, WAHIZATUL AFZAN, A., SITI NOOR JANNAH, S.

& NURUL WAHIDAH, M.R.

 

School of Fundamental Science, Faculty of Marine and Environmental Sciences, Universiti Malaysia Terenganu, 21030 Kuala Terengganu, Terengganu, Malaysia

 

Received: 2 July 2014/Accepted: 30 January 2016

 

ABSTRACT

Interaction between the Red Palm Weevil (RPW) and coconuts will stimulate the plants’ early response by producing the reactive oxygen species (ROS) which causes lipid peroxidation and membrane damage of the host plants. Thus, a multiple defense lines, including both scavenging enzymes and molecular antioxidants have been evolved to promptly inactivate these radicals. This study investigated the responses of catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), α-tocopherol, ascorbic acid and carotenoids contents of three coconut cultivars which were PANDAN, MAWA and MATAG against the RPW infestation. The infested PANDAN and MAWA exhibited higher CAT, POD and APX specific activities of 2.60 ± 0.11, 5.0 ± 0.72 and 1.58 ± 0.20 units/mg protein for PANDAN whereas 1.13 ± 0.04, 39.38 ± 2.29 and 1.15 ± 0.16 units/mg, protein for MAWA) compared with controls. However, MATAG cultivar showed no significant difference (p<0.05) in the production of both enzymes except for POD specific activities. RPW infestations only managed to trigger the α-tocopherol concentrations in the MAWA cultivar compared with the others. Infested MAWA and MATAG increased the ascorbic acid concentrations, however, a contrast results was observed in infested PANDAN. All coconut cultivars exhibited higher carotenoids content (2771.20 ± 263.90, 3043.20 ± 526.35 and 921.20 ± 281.10 μg/g.fwt of PANDAN, MAWA and MATAG, respectively) compared with their respective controls (455.20 ± 135.10, 1408.40 ± 103.02 and 248.80 ± 110.39 μg/g.fwt). The above results indicated that the oxidative stress induced by the RPW infestation would stimulate the activities of enzymes and molecular antioxidants studied especially in infested MAWA. Thus, it may be suggested that MAWA cultivar was more tolerance towards RPW infestation compared to MATAG and PANDAN. It is hoped that this finding will provide clues on how plant respond toward stress during infestation, thus further action can be activated as soon as possible to control the spread of  R. ferrugineus.

 

Keywords: Antioxidants; coconut; enzymatic antioxidants; non-enzymatic; oxidative stress; red palm weevil

 

ABSTRAK

Interaksi antara Kumbang Merah Palma (RPW) dan pokok kelapa akan mencetuskan tindak balas awal tumbuhan dengan menghasilkan spesies oksigen reaktif (ROS) yang menyebabkan peroksidasi lipid dan kerosakan kepada membran pokok perumah. Sistem pertahanan tumbuhan antaranya enzim dan juga antioksidan telah bertindak balas untuk menyahaktifkan radikal ini. Kajian ini bertujuan mengkaji tindakbalas katalase, (CAT), peroksida (POD), askorbat peroksida (APX), α-tokoferol, asid askorbik dan kandungan karotenoid tiga kultivar kelapa (PANDAN, MAWA dan MATAG) terhadap serangan RPW. Pokok PANDAN dan MAWA yang diserang menunjukkan aktiviti spesifik enzim CAT, APX dan POD yang lebih tinggi iaitu 2.60 ± 0.11, 5.0 ± 0.72 dan 1.58 ± 0.20 unit/mg protein untuk PANDAN manakala 1.13 ± 0.04, 39.38 ± 2.29 dan 1.15 ± 0.16 unit/mg protein untuk MAWA berbanding dengan kawalan. Walau bagaimanapun, tiada perbezaan bererti (p<0.05) dalam penghasilan kedua-dua jenis enzim kecuali untuk aktiviti spesifik POD dalam kultivar MATAG. Serangan KPM hanya boleh mencetuskan kepekatan α-tokoferol di dalam kultivar MAWA berbanding dengan kultivar lain. Kandungan asid askorbik dalam kultivar MAWA dan MATAG yang diserang meningkat, walau bagaimanapun, keputusan yang sebaliknya didapati untuk kultivar PANDAN. Semua kultivar pokok kelapa yang telah diserang juga mengandungi kepekatan karotenoid yang lebih tinggi (2771.20 ± 263.90, 3043.20 ± 526.35 dan 921.20 ± 281.10 μg/g.fwt, masing-masing untuk PANDAN, MAWA dan MATAG) berbanding dengan kawalan (455.20 ± 135.10, 1408.40 ± 103.02 dan 248.80 ± 110.39 μg/g.fwt). Keputusan ini menunjukkan tegasan oksidatif yang terhasil daripada serangan KPM mencetuskan aktiviti enzim dan kandungan molekul antioksidan yang dikaji terutamanya dalam kultivar MAWA. Oleh itu, adalah dicadangkan bahawa kultivar MAWA adalah lebih rintang terhadap serangan RPW berbanding dengan kultivar MATAG dan PANDAN. Adalah diharapkan agar hasil kajian ini boleh memberikan gambaran bagaimana tindak balas tumbuhan terhadap serangan RPW, supaya tindakan seterusnya boleh diaktifkan sebaik-baik sahaja serangan berlaku untuk mengawal penyebaran R. ferrugineus.

 

Kata kunci: Antioksida; antioksida enzim; bukan-enzim; kelapa; kumbang merah palma; tegasan oksidatif

REFERENCES

Agrawal, R. & Patwardhan, M.V. 1993. Production of peroxidase enzyme by callus cultures of Citrus aurantifolia. Journal Science Food Agriculture 61: 377-378.

Arora, A., Sairam, R.K. & Srivastava, G.C. 2002. Oxidative stress and antioxidative system in plants. Current Science 82(10): 1227-1238.

Ashry, N.N. & Mohamed, H.I. 2012. Impact of secondary metabolites and related enzymes in flax resistance and/ or susceptibility to powdery mildew. African Journal of Biotechnology 11(5): 1073-1077.

Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254.

Chan, E. & Elevitch, C.R. 2006. Cocos nucifera (coconut). Profiles for Pacific Island agroforestry. http://www. agroforestry.net/tti/Cocos-coconut.pdf. Accessed on 30 January 2014.

Clairborne, A. 1985. Catalase activity. In Handbook of Method for Oxygen Radical Research, edited by Greenwald, E.A. Boca Raton: CRC Press. pp: 283-284.

Department of Agriculture (DOA). 2011. Report on current status of attack of Red Palm Weevil, Rhynchophorus ferrugineus in Terengganu. Putrajaya: DOA Press.

El-Khallal, S.M. 2007. Induction and modulation of resistance in tomato plants against Fusarium wilt disease by bioagent fungi (arbuscular mycorrhiza) and/or hormonal elicitors (jasmonic acid & salicylic acid): 2-changes in the antioxidant enzymes, phenolic compounds and pathogen related- proteins. Aust. J. Basic Appl. Sci. 1(4): 717-732.

Gomez, S.K., Oosterhuis, D.M., Rajguru, S.N. & Johnson, D.R. 2004. Molecular biology and physiology foliar antioxidant enzyme responses in cotton after aphid herbivory. The Journal of Cotton Science 8: 99-104.

Hildebrand, D.F., Rodriguez, J.G., Brown, G.C., Luu, K.J. & Volden, C.S. 1986. Peroxidative responses of leaves in two soybean genotypes injured by two spotted spider mites. Acari: Tetranychidae. Journal of Economic Entomology 79: 1459-1465.

Hodges, D.M., Andrews, C.J., Johnson, D.A. & Hamilton, R.I. 1996. Antioxidant compound responses to chilling stress in differentially sensitive inbred maize lines. Physiologia Plantarum 98: 685-692.

Jagota, S.K. & Dani, H.M. 1982. A new colorimetric technique for the estimation of vitamin C using Folin phenol reagent. Analytical Biochemistry 127: 178-182.

Kanno, C. & Yamauchi, K. 1977. Application of a new iron reagent, 3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine, to spectrophotometric determination of tocopherols. Agricultural Biological Chemistry 41(3): 593-596.

Knogge, W. 1996. Fungal infection of plants. The Plant Cell 8: 1711-1722.

Kumar, K.A., Varaprasad, P. & Rao, A.V.B. 2009. Effect of fluoride on catalase, guiacol peroxidase and ascorbate oxidase activities in two verities of Mulberry leaves (Morus alba L.). Research Journal of Earth Sciences 1(2): 69-73.

Lichtenthaler, H.K. 1987. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. In Methods in Enzymology, edited by Packer, I. & Douce, R. Vol 148. New York: Academic Press. pp. 350-382.

Matthew, C. 2002. A comparison of the amount of the amount of catalase enzyme in different plant aand animal tissue. Biochemistry 21: 112-134.

Melo, G.A., Shimizu, M.M. & Mazzafera, P. 2006. Polyphenoloxidase activity in coffee leaves and its role in resistance against the coffee leaf miner and coffee leaf rust. Phytochemistry 67: 277-285.

Mittler, R. 2002. Oxidatiev stress antioxidants and stress tolerance. Trends Plant Science 7: 405-410.

Munne-Bosh, S. 2005. The role of α-tocopherol in plant stress tolerance. Journal of Plant Physiology 162: 743-748.

Nakano, Y. & Asada, K. 1981. Hydrogen peroxide scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiology 22: 867-880.

Sairam, R.K., Deshmukh, P.S. & Saxena, D.C. 1998. Roles of antioxidant systems in wheat genotype tolerance to water stress. Biologia Plantarum 41: 387-394.

Tiffany, H.M., Sarath, G., Baxendale, F., Novak, D., Bose, S., Ni, X. & Quisenberry, S. 2004. Characterization of oxidative enzyme changes in Buffalograsses challenged by Blissus occiduus. Journal of Economic Entomology 97(3): 1086-1095.

Thirupathi, K., Jun-Cheol, M., Changsoo, K., Kumariah, M. & Wook, K. 2011. Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Australian Journal of Crop Science 5(6): 709-725.

Trebst, A., Depka, B. & Hollander-Czytko, H. 2002. A specific role for tocopherol and of chemical singlet oxygen quenchers in the maintenance of photosystem II structure and function in Chlamydomonas reinhardtii. FEBS Letters 43: 2157-2162.

Welinder, K.G. 1992. Superfamily of plant, fungal and bacterial peroxidases. Current Opinion Structural Biology 2: 388-393.

Zamocky, M., Janecek, S. & Koller, F. 2002. Common phylogeny of catalase peroxidase and ascorbate peroxidase. Gene 256: 169-182.

Zhang, S., Lu, S., Xu, X., Korpelainen, H. & Li, H. 2009. Changes in antioxidant enzyme activities and isozyme profiles in leaves of male and female Populus cathayana infected with Melampsora larici-populina. Tree Physiology 30: 116-128.

 

 

*Corresponding author; email: yatiyusuf@umt.edu.my

 

 

 

previous