Sains Malaysiana 45(8)(2016): 1235–1242

 

Effect of HNTs Addition in the Injection Moulded Thermoplastic Polyurethane Matrix on the Mechanical and Thermal Properties

(Kesan Penambahan HNTs dalam Pengacuan Suntikan Matriks Termoplastik Poliuretana ke atas Sifat Mekanik dan Terma)

 

TAYSER SUMER GAAZ1,2*, ABU BAKAR SULONG1 & ABDUL AMIR H. KADHUM2

 

1Department of Mechanical & Materials Engineering, Faculty of Engineering & Built Environment

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia

 

2Department of Chemical & Process Engineering, Faculty of Engineering & Built Environment

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia

 

3Department of Equipment’s & Machines Engineering, Technical College Al-Musaib

Al-Furat Al-Awsat Technical University, Iraq

 

Received: 20 April 2015/Accepted: 20 November 2015

 

ABSTRACT

The additions of nanofillers are able to enhance the mechanical properties of neat polymer matrix. There were few researchers reported on the mechanical properties of halloysite nanotubes reinforced thermoplastic polyurethane (HNTs-TPU) nanocomposites formed through casting and compression moulding. However, fewer researchers also reported study on HNTs-TPU formed through injection molding. The main objective of this paper was to study the effect of HNTs addition of TPU matrix on mechanical and physical properties. HNTs were mixed in TPU matrix using a brabender mixer with concentration ranging from 0.5 to 7 wt. % HNT loading (at specific mixing speed, mixing time and mixing temperature). Injection moulding was carried out to form tensile bar shaped specimens with specific moulding parameters (injection temperature, injection time and injection pressure). Increment around 35% of tensile strength of the specimen was found at 1 wt. % HNT loading concentration which exhibited the value of 24.3 MPa, compared to neat TPU; the best mixing. The Young’s modulus was increased with increasing HNTs loading. The elongation decreased with increasing HNTs loading. The FESEM results showed that HNTs were dispersed in TPU matrix. The TGA results showed that the addition of 1 wt. % HNTs enhanced the thermal properties. It can be concluded that HNTs-TPU has improved tensile and physical properties compared with neat TPU due to the addition of nanofiller.

 

Keywords: Halloysite nanotubes; mechanical properties; nanocomposites; physical properties; thermoplastic polyurethane

 

ABSTRAK

Penambahan nano pengisi dapat meningkatkan sifat mekanik matriks polimer tulen. Terdapat beberapa penyelidik telah melaporkan mengenai sifat mekanik tiub nano haloisit diperkuat nanokomposit termoplastik poliuretana (HNTs-TPU) yang dibentuk melalui pengacuan tuangan dan mampatan. Walau bagaimanapun, hanya sedikit penyelidik yang mengkaji tentang HNTs-TPU yang dibentuk melalui pengacuan suntikan. Objektif utama penyelidikan ini ialah mengkaji kesan penambahan HNTs matriks TPU ke atas sifat mekanik dan fizikal. HNTs telah dicampurkan dalam matriks TPU menggunakan pembancuh brabender dengan kepekatan antara 0.5 hingga 7 % bt. Pembebanan HNT (pada kelajuan, masa dan suhu pencampuran yang telah ditetapkan). Pengacuan suntikan telah dijalankan untuk membentuk spesimen berbentuk bar tegangan dengan parameter pengacuan tertentu (suhu, masa dan suntikan pengacuan). Pertambahan nilai kekuatan tegangan spesimen sebanyak 35% diperoleh pada 1 % bt. kepekatan pembebanan HNT dengan mengeluarkan nilai 24.3 MPa berbanding TPU tulen; campuran terbaik. Nilai modulus Young meningkat apabila pembebanan HNTs meningkat. Pemanjangan menyusut dengan peningkatkan pembebanan HNTs. Keputusan FESEM menunjukkan bahawa HNTs meresap ke dalam matriks TPU. Keputusan analisis TGA menunjukkan bahawa penambahan 1 % bt. HNTs telah meningkatkan sifat terma. Oleh itu, dapat disimpulkan bahawa HNTs-TPU telah menambah baik sifat tegangan dan fizikal berbanding dengan TPU tulen berdasarkan kesan penambahan nano pengisi.

 

Kata kunci: Nano komposit; sifat fizikal; sifat mekanik; termoplastik poliuretana; tiub nano haloisit

REFERENCES

 

ASTM. 1998. ASTM D-638 type V-Standard Test Method for Tensile Properties of Plastics.

Barick, A.K. & Tripathy, D.K. 2011. Preparation, characterization and properties of acid functionalized multi-walled carbon nanotube reinforced thermoplastic polyurethane nanocomposites. Materials Science and Engineering: B 176: 1435-1447.

Bian, J., Lin, H.L., He, F.X., Wei, X.W., Chang, I.T. & Sancaktar, E. 2013. Fabrication of microwave exfoliated graphite oxide reinforced thermoplastic polyurethane nanocomposites: Effects of filler on morphology, mechanical, thermal and conductive properties. Composites Part A: Applied Science and Manufacturing 47: 72-82.

Boubakri, A., Haddar, N., Elleuch, K. & Bienvenu, Y. 2010. Impact of aging conditions on mechanical properties of thermoplastic polyurethane. Materials & Design 31: 4194- 4201.

Boubakri, A., Elleuch, K., Guermazi, N. & Ayedi, H. 2009. Investigations on hygrothermal aging of thermoplastic polyurethane material. Materials & Design 30: 3958-3965.

Cheng, W., Dong, S. & Wang, E. 2002. Colloid chemical approach to nanoelectrode ensembles with highly controllable active area fraction. Analytical Chemistry 74: 3599-3604.

Deng, S., Zhang, J. & Ye, L. 2009. Halloysite-epoxy nanocomposites with improved particle dispersion through ball mill homogenisation and chemical treatments. Composites Science and Technology 69: 2497-2505.

Du, M., Guo, B. & Jia, D. 2010. Newly emerging applications of halloysite nanotubes: a review. Polymer International 59: 574-582.

Gholami, M. & Mir Mohamad Sadeghi, G. 2015. Investigating the effects of chemical modification of clay nanoparticles on thermal degradation and mechanical properties of TPU/nanoclay composites. Journal of Particle Science & Technology 1: 1-11.

Guo, B., Zou, Q., Lei, Y., Du, M., Liu, M. & Jia, D. 2009. Crystallization behavior of polyamide 6/halloysite nanotubes nanocomposites. Thermochimica Acta 484: 48-56.

Ha, C.S., Kim, Y., Lee, W.K., Cho, W.J. & Kim, Y. 1998. Fracture toughness and properties of plasticized PVC and thermoplastic polyurethane blends. Polymer 39: 4765-4772.

Ismail, H., Pasbakhsh, P., Fauzi, M.A. & Bakar, A.A. 2008. Morphological, thermal and tensile properties of halloysite nanotubes filled ethylene propylene diene monomer (EPDM) nanocomposites. Polymer Testing 27: 841-850.

Joussein, E., Petit, S., Churchman, J., Theng, B., Righi, D. & Delvaux, B. 2005. Halloysite clay minerals-a review. Clay Minerals 40: 383-426.

Kelly, H., Deasy, P., Ziaka, E. & Claffey, N. 2004. Formulation and preliminary in vivo dog studies of a novel drug delivery system for the treatment of periodontitis. International Journal of Pharmaceutics 274: 167-183.

Lecouvet, B., Gutierrez, J., Sclavons, M. & Bailly, C. 2011a. Structure-property relationships in polyamide 12/halloysite nanotube nanocomposites. Polymer Degradation and Stability 96: 226-235.

Lecouvet, B., Sclavons, M., Bourbigot, S., Devaux, J. & Bailly, C. 2011b. Water-assisted extrusion as a novel processing route to prepare polypropylene/halloysite nanotube nanocomposites: structure and properties. Polymer 52: 4284-4295.

Li, C., Han, J., Huang, Q., Xu, H., Tao, J. & Li, X. 2012. Microstructure development of thermoplastic polyurethanes under compression: The influence from first-order structure to aggregation structure and a structural optimization. Polymer 53: 1138-1147.

Liu, C., Luo, Y.F., Jia, Z.X., Zhong, B.C., Li, S.Q., Guo, B.C. & Jia, D.M. 2011. Enhancement of mechanical properties of poly (vinyl chloride) with polymethyl methacrylate-grafted halloysite nanotube. Express Polym. Lett. 5: 591-603.

Marini, J., Pollet, E., Averous, L. & Bretas, R.E.S. 2014. Elaboration and properties of novel biobased nanocomposites with halloysite nanotubes and thermoplastic polyurethane from dimerized fatty acids. Polymer 55: 5226-5234.

Marney, D.C.O., Russell, L.J., Wu, D.Y., Nguyen, T., Cramm, D., Rigopoulos, N., Wright, N & Greaves, M. 2008. The suitability of halloysite nanotubes as a fire retardant for nylon 6. Polymer Degradation and Stability 93(10): 1971-1978.

Prashantha, K., Lacrampe, M. & Krawczak, P. 2011a. Processing and characterization of halloysite nanotubes filled polypropylene nanocomposites based on a masterbatch route: effect of halloysites treatment on structural and mechanical properties. Express Polymer Letters 5: 295-307.

Prashantha, K., Schmitt, H., Lacrampe, M. & Krawczak, P. 2011b. Mechanical behaviour and essential work of fracture of halloysite nanotubes filled polyamide 6 nanocomposites. Composites Science and Technology 71: 1859-1866.

Price, R.R., Gaber, B.P. & Lvov, Y. 2001. In-vitro release characteristics of tetracycline HCl, khellin and nicotinamide adenine dineculeotide from halloysite; a cylindrical mineral. Journal of Microencapsulation 18: 713-722.

Shchukin, D., Price, R., Sukhorukov, G. & Lvov, Y. 2005. Biomimetic synthesis of vaterite in the interior of clay nanotubules. Small 1: 510-513.

Wang X. & Luo, X. 2004. A polymer network based on thermoplastic polyurethane and ethylene-propylene-diene elastomer via melt blending: morphology, mechanical properties, and rheology. European Polymer Journal 40: 2391-2399.

Yilgor, I., Yilgor, E., Guler, I.G., Ward, T.C. & Wilkes, G.L. 2006. FTIR investigation of the influence of diisocyanate symmetry on the morphology development in model segmented polyurethanes. Polymer 47: 4105-4114.

Zhou, W.Y., Guo, B., Liu, M., Liao, R., Rabie, A.B.M. & Jia, D. 2010.  Poly (vinyl alcohol)/halloysite nanotubes bionanocomposite films: properties and in vitro osteoblasts and fibroblasts response. Journal of Biomedical Materials Research Part A 93: 1574-1587.

 

 

*Corresponding author; email: taysersumer@gmail.com

 

 

 

previous