Sains Malaysiana 46(12)(2017): 2477–2488

http://dx.doi.org/10.17576/jsm-2017-4612-25

 

Effects of Speech Phonological Features during Passive Perception on Cortical Auditory Evoked Potential in Sensorineural Hearing Loss

(Kesan Ciri Fonologi Pertuturan semasa Persepsi Pasif pada Korteks Auditori Rangsang Potensi dalam Kehilangan Pendengaran Sensorineural)

 

HUA NONG TING1*, ABDUL RAUF A. BAKAR1, JAYASREE SANTHOSH2,3, MOHAMMED

G. AL-ZIDI1, IBRAHIM AMER IBRAHIM4 & NG SIEW CHEOK1

 

1Department of Biomedical Engineering, Faculty of Engineering, University of Malaya

50603 Kuala Lumpur, Federal Territory, Malaysia

 

2Department of Computer Engineering & Computer Science, School of Science and Engineering

Manipal International University, 71800 Nilai, Negeri Sembilan Darul Khusus, Malaysia

 

3Centre for Biomedical Engineering, Indian Institute of Technology-Delhi, New Delhi, India

 

4Department of Electrical Engineering, Faculty of Engineering, University of Malaya

50603 Kuala Lumpur, Federal Territory,Malaysia

 

Received: 16 July 2016/Accepted: 4 April 2017

 

ABSTRACT

The deficiency in the human auditory system of individuals suffering from sensorineural hearing loss (SNHL) is known to be associated with the difficulty in detecting of various speech phonological features that are frequently related to speech perception. This study investigated the effects of speech articulation features on the amplitude and latency of cortical auditory evoked potential (CAEP) components. The speech articulation features included the placing contrast and voicing contrast. 12 Malay subjects with normal hearing and 12 Malay subjects with SNHL were recruited for the study. The CAEPs response recorded at higher amplitude with longer latency when stimulated by voicing contrast cues compared to that of the placing contrast. Subjects with SNHL elicited greater amplitude with prolonged latencies in the majority of the CAEP components in both speech stimuli. The existence of different frequency spectral and time-varying acoustic cues of the speech stimuli was reflected by the CAEPs response strength and timing. We anticipate that the CAEPs responses could equip audiologist and clinicians with useful knowledge, concerning the potential deprivation experience by hearing impaired individuals, in auditory passive perception. This would help to determine what type of speech stimuli that might be useful in measuring speech perception abilities, especially in Malay Malaysian ethic group, for choosing a better rehabilitation program, since no such study conducted for evaluating speech perception among Malaysian clinical population.

 

Keywords: Consonant-vowel (CV); cortical auditory evoked potential (CAEP); electroencephalography (EEG); mismatch negativity (MMN); sensorineural hearing loss (SNHL)

 

ABSTRAK

Kekurangan dalam sistem auditori manusia terhadap individu yang mengalami kehilangan pendengaran sensorineural (SNHL) diketahui melalui kesukaran dalam mengesan pelbagai ciri ucapan fonologi yang sering berkait-rapat dengan persepsi pertuturan. Kajian ini mengetengahkan kesan ucapan artikulasi terhadap amplitud dan kependaman pada komponen potensi terbangkit auditori kortikal (CAEP). Ciri ucapan artikulasi termasuk kontras perletakan dan kontras suara. Seramai 12 individu normal tahap pendengaran dan 12 individu yang memiliki SNHL telah direkrut untuk kajian ini. Tindak balas CAEP terhadap isyarat kontras suara direkodkan pada amplitud lebih tinggi serta kependaman lebih lama berbanding isyarat kontras perletakkan. Individu yang memiliki SNHL menghasilkan amplitud lebih tinggi berserta kependaman lebih panjang dalam kebanyakan komponen CAEPs dan ini meliputi kedua-dua rangsangan ucapan. Kewujudan perbezaan spektrum frekuensi dan beza-masa isyarat akustik pada rangsangan ucapan dicerminkan oleh kekuatan tindak balas dan tempoh masa CAEPs. Kami menjangkakan bahawa tindak balas CAEPs dapat menyediakan pengetahuan yang berguna kepada pakar audiologi dan doktor dalam memahami pengurangan potensi yang dihidapi oleh individu persepsi auditori terjejas. Ini dapat membantu untuk menentukan apa jenis ransangan ucapan yang bersesuaian dalam menilai keupayaan persepsi ucapan, terutamanya dalam kalangan etnik Melayu di Malaysia seterusnya memilih program pemulihan yang lebih baik, kerana tidak ada kajian seumpama ini yang pernah dijalanlan untuk menilai persepsi ucapan dalam kalangan penduduk klinikal Malaysia.

 

Kata kunci: Elektroensefalografi (EEG); hilang saraf deria pendengaran (SNHL); konsonan-vokal (CV); korteks auditori rangsang potensi (CAEP); kenegatifan tak padan (MMN)

REFERENCES

Abbs, J.H. & Sussman, H.M. 1971. Neurophysiological feature detectors and speech perception: A discussion of theoretical implications. Journal of Speech, Language, and Hearing Research 14(1): 23-36.

Acharya, U.R., Sudarshan, V.K., Adeli, H., Santhosh, J., Koh, J.E., Puthankatti, S.D., & Adeli, A. 2015. A novel depression diagnosis index using nonlinear features in EEG signals. European Neurology 74(1-2): 79-83.

Acharya, U.R., Sree, S.V., Swapna, G., Martis, R.J. & Suri, J.S. 2013. Automated EEG analysis of epilepsy: A review. Knowledge-Based Systems 45: 147-165.

Acharya, U.R., Molinari, F., Sree, S.V., Chattopadhyay, S., Ng, K.H., & Suri, J.S. 2012. Automated diagnosis of epileptic EEG using entropies. Biomedical Signal Processing and Control 7(4): 401-408.

Acharya, U.R., Sree, S.V., Chattopadhyay, S., Yu, W. & Ang, P.C.A. 2011. Application of recurrence quantification analysis for the automated identification of epileptic EEG signals. International Journal of Neural Systems 21(03): 199-211.

Agung, K., Purdy, S.C., McMahon, C.M. & Newall, P. 2006. The use of cortical auditory evoked potentials to evaluate neural encoding of speech sounds in adults. Journal of the American Academy of Audiology 17(8): 559-572.

Ali, R., Wahab, S., Hamid, A. & Rahman, A. 2013. Neuropsychological profile at three months post injury in patients with traumatic brain injury. Sains Malaysiana 42(3): 403-408.

Anderson, S., Parbery-Clark, A., White-Schwoch, T., Drehobl, S. & Kraus, N. 2013. Effects of hearing loss on the subcortical representation of speech cues. The Journal of the Acoustical Society of America 133(5): 3030-3038.

Arsenault, J.S. & Buchsbaum, B.R. 2015. Distributed neural representations of phonological features during speech perception. The Journal of Neuroscience 35(2): 634-642.

Babloyantz, A., Salazar, J. & Nicolis, C. 1985. Evidence of chaotic dynamics of brain activity during the sleep cycle. Physics Letters A 111(3): 152-156.

Becker, F. & Reinvang, I. 2013. Identification of target tones and speech sounds studied with event-related potentials: Language-related changes in aphasia. Aphasiology 27(1): 20-40.

Becker, F. & Reinvang, I. 2007. Mismatch negativity elicited by tones and speech sounds: Changed topographical distribution in aphasia. Brain and Language 100(1): 69-78.

Bidelman, G.M. 2015. Towards an optimal paradigm for simultaneously recording cortical and brainstem auditory evoked potentials. Journal of Neuroscience Methods 241: 94-100.

Bien, H., Hanulikova, A., Weber, A. & Zwitserlood, P. 2016. A neurophysiological investigation of non-native phoneme perception by Dutch and German listeners. Frontiers in Psychology 7: 56.

Boothroyd, A. 1993. Speech perception, sensorineural hearing loss, and hearing aids. Acoustical Factors Affecting Hearing Aid Performance 2: 277-279.

Carpenter, A.L. & Shahin, A.J. 2013. Development of the N1-P2 auditory evoked response to amplitude rise time and rate of formant transition of speech sounds. Neuroscience Letters 544: 56-61.

Chua, K.C., Chandran, V., Acharya, U.R. & Lim, C.M. 2011. Application of higher order spectra to identify epileptic EEG. Journal of Medical Systems 35(6): 1563-1571.

Chua, K., Chandran, V., Rajendra Acharya, U. & Lim, C. 2009. Analysis of epileptic EEG signals using higher order spectra. Journal of Medical Engineering & Technology 33(1): 42-50.

Davies, P.L., Chang, W.P. & Gavin, W.J. 2010. Middle and late latency ERP components discriminate between adults, typical children, and children with sensory processing disorders. Frontiers in Integrative Neuroscience 4: 16.

Duncan, C.C., Barry, R.J., Connolly, J.F., Fischer, C., Michie, P.T., Näätänen, R., Polich, J., Reinvang, I. & Van Petten, C. 2009. Event-related potentials in clinical research: Guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clinical Neurophysiology 120(11): 1883- 1908.

Folstein, M.F., Folstein, S.E. & McHugh, P.R. 1975. “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research 12(3): 189-198.

Jaramillo, M., Ilvonen, T., Kujala, T., Alku, P., Tervaniemi, M. & Alho, K. 2001. Are different kinds of acoustic features processed differently for speech and non-speech sounds? Cognitive Brain Research 12(3): 459-466.

Korczak, P.A. & Stapells, D.R. 2010. Effects of various articulatory features of speech on cortical event-related potentials and behavioral measures of speech-sound processing. Ear and Hearing 31(4): 491-504.

Lehnertz, K. 2008. Epilepsy and nonlinear dynamics. Journal of Biological Physics 34(3-4): 253-266.

Li, Z., Gu, R., Zeng, X., Zhong, W., Qi, M. & Cen, J. 2016. Attentional bias in patients with decompensated Tinnitus: Prima facie evidence from event-related potentials. Audiology and Neurotology 21(1): 38-44.

Luck, S. 2005. An Introduction to Event-Related Potentials and their Neural Origins. (Chapter 1). Cambridge: MIT Press.

Mormann, F., Kreuz, T., Rieke, C., Andrzejak, R.G., Kraskov, A., David, P., Elger, C.E. & Lehnertz, K. 2005. On the predictability of epileptic seizures. Clinical Neurophysiology 116(3): 569-587.

Mormann, F., Kreuz, T., Andrzejak, R.G., David, P., Lehnertz, K. & Elger, C.E. 2003. Epileptic seizures are preceded by a decrease in synchronization. Epilepsy Research 53(3): 173-185.

Näätänen, R. 2001. The perception of speech sounds by the human brain as reflected by the mismatch negativity (MMN) and its magnetic equivalent (MMNm). Psychophysiology 38(1): 1-21.

Näätänen, R. 1995. The mismatch negativity: A powerful tool for cognitive neuroscience. Ear and Hearing 16(1): 6-18.

Näätänen, R. 1992. Attention and Brain Function. Hillsdale, New Jersey: Lawrence Erlbaum Associates.

Näätänen, R. & Escera, C. 2000. Mismatch negativity: Clinical and other applications. Audiology and Neurotology 5(3-4): 105-110.

Näätänen, R. & Picton, T. 1987. The N1 wave of the human electric and magnetic response to sound: A review and an analysis of the component structure. Psychophysiology 24(4): 375-425.

Näätänen, R., Paavilainen, P., Titinen, H., Jiang, D. & Alho, K. 1993. Attention and mismatch negativity. Psychophysiology 30(5): 436-450.

Oates, P.A., Kurtzberg, D. & Stapells, D.R. 2002. Effects of sensorineural hearing loss on cortical event-related potential and behavioral measures of speech-sound processing. Ear and Hearing 23(5): 399-415.

Picton, T., Bentin, S., Berg, P., Donchin, E., Hillyard, S., Miller, G.A., Ritter, W., Ruchkin, D.S., Rugg, M.D. & Taylor, M.J. 2000. Guidelines for using human event-related potentials to study cognition: Recording standards and publication criteria. Psychophysiology 37(2): 127-152.

Picton, T.W., Lins, O.G. & Scherg, M. 1995. The recording and analysis of event-related potentials. Handbook of Neuropsychology. Vol. 10, edited by Boller, F. & Grafman, J. Chapter 1.

Pratt, H., Starr, A., Michalewski, H.J., Dimitrijevic, A., Bleich, N. & Mittelman, N. 2009. Auditory-evoked potentials to frequency increase and decrease of high-and low-frequency tones. Clinical Neurophysiology 120(2): 360-373.

Reis, A.C.M.B. & Iório, M.C.M. 2007. P300 in subjects with hearing loss. Pró-Fono Revista de Atualização Científica 19(1): 113-122.

Ruffini, G., Dunne, S., Farrés, E., Cester, I., Watts, P.C., Ravi, S., Silva, P., Grau, C., Fuentemilla, L., Marco-Pallares, J. & Vandecasteele, B. 2007. ENOBIO Dry Electrophysiology Electrode; First Human Trial Plus Wireless Electrode System. Paper presented at the Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE.

Ruffini, G., Dunne, S., Farrés, E., Marco-Pallarés, J., Ray, C., Mendoza, E., Ray, C., Mendoza, E., Silva, R. & Grau, C. 2006. A dry electrophysiology electrode using CNT arrays. Sensors and Actuators A: Physical 132(1): 34-41.

Sams, M., Paavilainen, P., Alho, K. & Näätänen, R. 1985. Auditory frequency discrimination and event-related potentials. Electroencephalography and Clinical Neurophysiology/ Evoked Potentials Section 62(6): 437-448.

Scharinger, M., Monahan, P.J. & Idsardi, W.J. 2016. Linguistic category structure influences early auditory processing: Converging evidence from mismatch responses and cortical oscillations. NeuroImage 128: 293-301.

Schröder, A., van Diepen, R., Mazaheri, A., Petropoulos- Petalas, D., de Amesti, V.S., Vulink, N. & Denys, D. 2014. Diminished N1 auditory evoked potentials to oddball stimuli in misophonia patients. Frontiers in Behavioral Neuroscience 8: 123.

Siti Zamratol-Mai Sarah Mukari, Nashrah Maamor, Wan Syafira Ishak & Wan Fazlina Wan Hashim. 2016. Hearing loss and risk factors among community dwelling older adults in Selangor. Sains Malaysiana 45(9): 1405-1411.

Song, I.H., Lee, D.S. & Kim, S.I. 2004. Recurrence quantification analysis of sleep electoencephalogram in sleep apnea syndrome in humans. Neuroscience Letter 366(2): 148-153.

Stapells, D. 2002. Cortical event-related potentials to auditory stimuli. Handbook of Clinical Audiology 5: 378-406.

Steinhauer, K. 2014. Event-related potentials (ERPs) in second language research: A brief introduction to the technique, a selected review, and an invitation to reconsider critical periods in L2. Applied Linguistics 35(4): 393-417.

Tavabi, K., Elling, L., Dobel, C., Pantev, C. & Zwitserlood, P. 2009. Effects of place of articulation changes on auditory neural activity: A magnetoencephalography study. PloS One 4(2): 4452-4452.

Ting, H.N., Chia, S.Y., Hamid, B.A. & Mukari, S.Z.M.S. 2011. Acoustic characteristics of vowels by normal Malaysian Malay young adults. Journal of Voice 25(6): 305-309.

Tremblay, K.L., Piskosz, M. & Souza, P. 2003. Effects of age and age-related hearing loss on the neural representation of speech cues. Clinical Neurophysiology 114(7): 1332-1343.

Wang, T., Lin, L., Zhang, A., Peng, X. & Zhan, C.a.A. 2013. EMD-based EEG signal enhancement for auditory evoked potential recovery under high stimulus-rate paradigm. Biomedical Signal Processing and Control 8(6): 858-868.

Wunderlich, J.L. & Cone-Wesson, B.K. 2001. Effects of stimulus frequency and complexity on the mismatch negativity and other components of the cortical auditory-evoked potential. The Journal of the Acoustical Society of America 109(4): 1526-1537.

Wunderlich, J.L., Cone-Wesson, B.K. & Shepherd, R. 2006. Maturation of the cortical auditory evoked potential in infants and young children. Hearing Research 212(1): 185-202.

Ylinen, S., Shestakova, A., Huotilainen, M., Alku, P. & Näätänen, R. 2006. Mismatch negativity (MMN) elicited by changes in phoneme length: A cross-linguistic study. Brain Research 1072(1): 175-185.

 

 

*Corresponding author; email: tinghn@um.edu.my

 

 

 

 

previous