Sains Malaysiana 46(6)(2017): 903–908

http://dx.doi.org/10.17576/jsm-2017-4606-09

 

Analysis of Biofilms Formation by Cronobacter sp. during Growth in Infant Formula Milk

(Analisis Pembentukan Biofilem oleh Cronobacter sp. sewaktu Pertumbuhan di dalam Susu Formula Kanak-kanak)

 

AISHAH FAIQAH MOHD YUSOF1, PRANESHA PRABHAKARAN1, NUR DIYANA AZLI3, NORRAKIAH ABDULLAH SANI2 & WAN SYAIDATUL AQMA1*

 

1School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

3Department of Biotechnology, International Islamic University Malaysia (IIUM), Bandar Indera Mahkota, 25200 Kuantan, Pahang Darul Makmur, Malaysia

 

Received: 19 February 2016/Accepted: 14 December 2016

 

ABSTRACT

Pacifier nipples are in permanent contact with saliva and with the oral microflora therefore, act as a favoured site for the growth of biofilms. This research was conducted to identify the bacterial biofilms that has been found on the pacifiers that collected from local child nursery and to analyse the formation of biofilms by Cronobacter sp. during growth in infant formula milk. Pacifiers collected were analysed to obtain colony forming unit (CFU) and isolated bacteria were identified using several biochemical tests according to Bergey's Manual. Biofilm assay of three Cronobacter sp. were conducted using 24 wells microtiter plate and stained with 1% of crystal violet solution at different time interval: 6, 12, 18 and 24 h. The hydrophobicity of the bacterial cell suspension was evaluated using bacterial adhesion to hydrocarbons (BATH) method. Extracellular polymeric substances (EPS) analysis was done to identify percentage of carbohydrate and protein content by using phenol sulphuric acid method and Bradford method, respectively. The results obtained showed that the normal microflora bacteria were the most abundant microorganisms that were found on the pacifier with the main genus isolated was Staphylococcus sp., Enterobacteriaceae sp. and Clostridium sp. Based on biofilm and EPS analysis, Cronobacter sakazakii formed a strong biofilms after 18 h, with carbohydrate was identified as main component of EPS.

 

Keywords: Cell surface hydrophobicity; extracellular polymeric substances (EPS); Staphylococcus sp.

 

ABSTRAK

Puting mempunyai sentuhan kekal dengan air liur dan mikroflora oral yang menjadikannya tapak untuk pertumbuhan biofilem. Kajian ini dijalankan untuk mengenal pasti bakteria biofilem yang terdapat pada puting yang diperoleh dari pusat jagaan kanak-kanak setempat dan untuk menganalisis pembentukan biofilem oleh Cronobacter sp. sewaktu pertumbuhan di dalam formula susu kanak-kanak. Unit penghasilan koloni telah dianalisis daripada puting dan bakteria dikenal pasti melalui kaedah biokimia berdasarkan Bergey's Manual. Asai biofilem tigaCronobacter sp. telah dilakukan menggunakan piring microtiter 24 telaga menggunakan pewarnaan ungu hablur 1% pada kala masa: 6, 12, 18 dan 24 jam. Hidrofobisiti permukaan sel dinilai menggunakan kaedah pelekatan bakteria pada hidrokarbon (BATH). Analisis bahan polimerik ekstrasel (EPS) dijalankan untuk mengenal pasti peratus kandungan karbohidrat dan protein menggunakan kaedah fenol asid sulfurik dan kaedah Bradford. Hasil kajian menunjukkan kebanyakan bakteria yang dipencil daripada puting adalah mikroflora normal dengan genus utama adalah daripada Staphylococcus sp. Berdasarkan analisis biofilem dan EPS menunjukkan Cronobacter sakazakii mempunyai kekuatan penghasilan biofilem pada 18 jam dengan kandungan utama adalah karbohidrat.

 

Kata kunci: Bahan polimerik ekstrasel (EPS); hidrofobisiti permukaan sel; Staphylococcus sp.

REFERENCES

Adair, S.M. 2003. Pacifier use in children: A review of recent literature. Paediatric Dentistry 25(5): 449-458.

Basson, A., Flemming, L. & Chenia, H. 2008. Evaluation of adherence, hydrophobicity, aggregation, and biofilm development of Flavobacterium johnsoniae-like isolates. Microbial Ecology 55(1): 1-14.

Bin, Z., Baosheng, S., Min, J., Taishi, G. & Zhenghong, G. 2008. Extraction and analysis of extracellular polymeric substances in membrane fouling in submerged Mbr. Desalination 227(1): 286-294.

Blood-Siegfried, J. 2009. The role of infection and inflammation in sudden infant death syndrome. Immunopharmacology and Immunotoxicology31(4): 516-523.

Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72(1): 248-254.

Brook, I. & Gober, A.E. 1997. Bacterial colonization of pacifiers of infants with acute otitis media. The Journal of Laryngology & Otology 111(07): 614-615.

Comina, E., Marion, K., Renaud, F.N., Dore, J., Bergeron, E. & Freney, J. 2006. Pacifiers: A microbial reservoir. Nursing & Health Sciences 8(4): 216-223.

Costerton, J.W., Stewart, P.S. & Greenberg, E.P. 1999. Bacterial biofilms: A common cause of persistent infections. Science 284(5418): 1318-1322.

Czaczyk, K. & Myszka, K. 2007. Biosynthesis of extracellular polymeric substances (EPS) and its role in microbial biofilm formation. Polish Journal of Environmental Studies 16(6): 799.

Dancer, G.I., Mah, J.H. & Kang, D.H. 2009. Influences of milk components on biofilm formation of Cronobacter spp. (Enterobacter sakazakii). Letters in Applied Microbiology 48(6): 718-725.

Holt, J.G., Krieg, N.R., Sneath, P.H.A., Stanley, J.T. & William, S.T. 1994. Bergey’s Manual of Determinative Bacteriology Baltimore. Philadelphia: Lippincott Williams and Wilkins.

Jain, A. & Bhosle, N.B. 2008. Role of B 1-4 Linked polymers in the biofilm structure of marine Pseudomonas spp. CE-2 on 304 stainless steel. Biofouling 24(4): 283-290.

Jain, A., Nishad, K.K. & Bosle, N.B. 2007. Effects of DNP on the cell surface properties of marine bacteria and its implication for adhesion to surfaces. Biofouling 23(3-4): 171-177.

Karunakaran, E., Mukherjee, J., Ramalingam, B. & Biggs, C.A. 2011. Applied Microbiology and Biotechnology 90: 1869-1881.

Mattos-Graner, R.O., De Moraes, A.B., Rontani, R. & Birman, E.G. 2000. Relation of oral yeast infection in Brazilian infants and use of a pacifier. ASDC Journal of Dentistry for Children 68(1): 33-36.

Mohamed, J.A., Huang, W., Nallapareddy, S.R., Teng, F. & Murray, B.E. 2004. Influence of origin of isolates, especially endocarditis isolates, and various genes on biofilm formation by Enterococcus faecalis. Infection and Immunity 72(6): 3658-3663.

Molepo, J. & Molaudzi, M. 2015. Contamination and disinfection of silicone pacifiers: An in vitro study. South African Dental Journal 70(8): 351-353.

Nelson-Filho, P., Louvain, M.C., Macari, S., Lucisano, M.P., Silva, R.A.B.D., Queiroz, A.M.D., Gaton-Hernandez, P. & Silva, L.A.B.D. 2015. Microbial contamination and disinfection methods of pacifiers. Journal of Applied Oral Science 23(5): 523-528.

Nwodo, U.U., Green, E. & Okoh, A.I. 2012. Bacterial exopolysaccharides: Functionality and prospects. International Journal of Molecular Sciences 13(11): 14002-14015.

Orimadegun, A.E. & Obokon, G.O. 2015. Prevalence of non-nutritive sucking habits and potential influencing factors among children in urban communities in Nigeria. Frontiers in Paediatrics3: 30.

O’toole, G., Kaplan, H.B. & Kolter, R. 2000. Biofilm formation as microbial development. Annual Reviews in Microbiology 54(1): 49-79.

Pal, A. & Paul, A.K. 2008. Microbial extracellular polymeric substances: Central elements in heavy metal bioremediation. Indian Journal of Microbiology 48(1): 49-64.

Shin, H., Kang, S. & Nam, S. 2001. Effect of carbohydrate and protein in the EPS on sludge settling characteristics. Water Science & Technology 43(6): 193-196.

Singha, T.K. 2012. Microbial extracellular polymeric substances: Production, isolation and applications. IOSR Journal of Pharmacy 2(2): 271-281.

 

 

*Corresponding author; email: syaidatul@ukm.edu.my

 

previous