Sains Malaysiana 46(6)(2017): 953–965

http://dx.doi.org/10.17576/jsm-2017-4606-15

 

Sifat Kinetik dan Isoterma Penjerapan Formaldehid ke atas Komposit Serbuk Serat Kelapa Sawit-TiO2

(Kinetic and Isotherm Properties of Formaldehyde Adsorption on Oil Palm Fibre-TiO2 Composite Powder)

 

NOR RAHAFZA ABDUL MANAP1, ROSLINDA SHAMSUDIN1*, MOHD NORHAFSAM MAGHPOR2, MUHAMMAD AZMI ABDUL HAMID1 & AZMAN JALAR1

 

1Pusat Pengajian Fizik Gunaan, Fakulti Sains & Teknologi, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia

 

2Bahagian Pembangunan Penyelidikan dan Konsultansi, Institut Kesihatan dan Keselamatan Pekerjaan Nasional (NIOSH), Lot 1, Jalan 15/1, Seksyen 15, 43650 Bandar Baru Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 24 May 2016/Accepted: 20 December 2016

 

ABSTRAK

Sifat isoterma dan kinetik penjerapan formaldehid ke atas komposit serbuk serat kelapa sawit-TiO2 yang melibatkan sistem gas-pepejal adalah dikaji. Komposit serbuk serat kelapa sawit-TiO2 dihasilkan dengan mencampurkan serbuk kelapa sawit dan serbuk TiO2 dengan nisbah 8:2 menggunakan teknik pengisaran mekanik. Pengujian dijalankan di dalam kebuk ujian dengan komposit serbuk kelapa sawit-TiO2 dibiarkan untuk menjerap dan mengurangkan nilai kepekatan formaldehid secara pasif. Didapati nilai penjerapan maksima dan sifat kinetik penjerapan bergantung kepada kepekatan awal formaldehid. Kepekatan awal, Ci, 2.1 ppm dan 0.5 ppm masing-masing diwakili oleh pseudo-tertib pertama dan pseudo tertib kedua, manakala Ci = 0.75 dan 0.9 ppm diwakili oleh model Elovich. Isoterma penjerapan formaldehid diwakili oleh isoterma Freundlich dengan nilai korelasi tertinggi R2 = 0.9397 berbanding nilai korelasi isoterma Langmuir (R2 = 0.8692) dan isoterma Temkin (R2 = 0.8756). Parameter keseimbangan, 0<RL<1 bagi setiap kepekatan pemula menunjukkan penjerapan formaldehid ke atas serbuk komposit serat kelapa sawit-TiO2 cenderung untuk berlaku.

 

Kata kunci: Isoterma; kinetik; komposit; penjerapan; serat kelapa sawit

 

ABSTRACT

Isotherm and kinetic properties of formaldehyde adsorption on oil palm fibre-TiO2 composite powder; a gas-solid system was studied. Oil palm fibre-TiO2 composite powder was prepared by mixing oil palm fibre with TiO2 powder with ratio of 4:1 using a mechanical milling technique. The test was done in a test chamber where oil palm fibre-TiO2 composite powder was left to passively adsorb the formaldehyde. The maximum adsorption capacity value and kinetic properties depends on initial concentration of formaldehyde. Formaldehyde initial concentration of 2.1 and 0.5 ppm was best presented by pseudo-first order and pseudo-second order, respectively, while for initial concentration of 0.75 and 0.9 ppm, both were well presented by Elovich model. The adsorption isotherm of formaldehyde was best described by Freundlich isotherm which showed the highest correlation coefficient, R2 = 0.9397 compared to Langmuirs' (R2 = 0.8692) and Temkins' (R2 = 0.8756) correlation coefficients. Equilibrium parameter of 0<RL<1 which showed the formaldehyde adsorption onto oil palm fibre-TiO2 composite was favorable to happen.

 

Keywords: Adsorption; composite; isotherm; kinetic; oil palm fibre

REFERENCES

Aber, S., Khataee, A. & Sheydaei, M. 2009. Optimization of activated carbon fiber preparation from kenaf using K2HPO4 as chemical activator for adsorption of phenolic compounds. Bioresource Technology 100(24): 6586-6591.

Abnisa, F., Arami-Niya, A., Wan Daud, W.M.A., Sahu, J.N. & Noor, I.M. 2013. Utilization of oil palm tree residues to produce bio-oil and bio-char via pyrolysis. Energy Conversion and Management 76: 1073-1082.

Aparecida, K., Gusmão, G., Vinícius, L., Gurgel, A., Márcia, T., Melo, S. & Frédéric, L. 2012. Dyes and pigments application of succinylated sugarcane bagasse as adsorbent to remove methylene blue and gentian violet from aqueous solutions: Kinetic and equilibrium studies. Dyes and Pigments 92(3): 967-974.

Azizian, S. 2004. Kinetic models of sorption: A theoretical analysis. Journal of Colloid and Interface Science 276(1): 47-52.

Cao, J.S., Lin, J.X., Fang, F., Zhang, M.T. & Hu, Z.R. 2014. A new absorbent by modifying walnut shell for the removal of anionic dye: Kinetic and thermodynamic studies. Bioresource Technology 163: 199-205.

Carter, E.M., Katz, L.E., Speitel, G.E. & Ramirez, D. 2011. Gas-phase formaldehyde adsorption isotherm studies on activated carbon: Correlations of adsorption capacity to surface functional group density. Environmental Science and Technology 45: 6498-6503.

Chin, S., Park, E., Kim, M., Jeong, J., Bae, G.N. & Jurng, J. 2011. Preparation of TiO2 ultrafine nanopowder with large surface area and its photocatalytic activity for gaseous nitrogen oxides. Powder Technology 206(3): 306-311.

El-Maaty, W.M.A. & Awad, F.S. 2014. Studies on biosorption of mercury (II) from aqueous solution on nitric acid modified activated carbon prepared from water. ABC Journal of Advanced Research 3(1): 50-73.

Ewlad-Ahmed, A.M., Morris, M.A., Patwardhan, S.V. & Gibson, L.T. 2012. Removal of formaldehyde from air using functionalized silica supports. Environmental Science and Technology 46: 13354-13360.

Foo, K.Y. & Hameed, B.H. 2009. Value-added utilization of oil palm ash: A superior recycling of the industrial agricultural waste. Journal of Hazardous Materials 172(2-3): 523-531.

Foo, K.Y. & Hameed, B.H. 2011. Preparation of oil palm ( Elaeis ) empty fruit bunch activated carbon by microwave-assisted KOH activation for the adsorption of methylene blue. DES 275(1-3): 302-305.

Gallego, E., Roca, F.J., Perales, J.F. & Guardino, X. 2013. Experimental evaluation of VOC removal efficiency of a coconut shell activated carbon filter for indoor air quality enhancement. Building and Environment 67: 14-25.

Gallego, E., Roca, F.X., Guardino, X. & Rosell, M.G. 2008. Indoor and outdoor BTX levels in Barcelona City metropolitan area and Catalan rural areas. Journal of Environmental Sciences China 20(9): 1063-1069.

Golden, R. & Valentini, M. 2014. Formaldehyde and methylene glycol equivalence: Critical assessment of chemical and toxicological aspects. Regulatory Toxicology and Pharmacology 69(2): 178-186.

Gupta, V.K., Rastogi, A. & Nayak, A. 2010. Biosorption of nickel onto treated alga (Oedogonium hatei): Application of isotherm and kinetic models. Journal of Colloid and Interface Science 342(2): 533-539.

Halim, A.A. & Ahmad, M.F. 2013. Isoterma dan kinetik penjerapan boron oleh batu kapur sebagai penjerap berkos rendah. Sains Malaysiana42(12): 1689-1696.

Ho, Y. 2006. Review of second-order models for adsorption systems. Journal of Hazardous Materials 136(3): 681-689.

Ho, Y.S. 2004. Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics 59(1): 171-177.

Kim, D.I., Park, J.H., Kim, S.D., Lee, J.Y., Yim, J.H., Jeon, J.K., Park, S.H. & Park, Y.K. 2011. Comparison of removal ability of indoor formaldehyde over different materials functionalized with various amine groups. Journal of Industrial and Engineering Chemistry 17(1): 1-5.

Kumagai, S., Sasaki, K., Shimizu, Y. & Takeda, K. 2008. Formaldehyde and acetaldehyde adsorption properties of heat-treated rice husks. Separation and Purification Technology 61(3): 398-403.

Langmuir, I. 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society 40(9): 1361-1403.

Lee, K.J., Shiratori, N., Lee, G.H., Miyawaki, J., Mochida, I., Yoon, S.H. & Jang, J. 2010. Activated carbon nanofiber produced from electrospun polyacrylonitrile nanofiber as a highly efficient formaldehyde adsorbent. Carbon 48(15): 4248-4255.

Li, W., Yang, K., Peng, J., Zhang, L., Guo, S. & Xia, H. 2008. Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars. Industrial Crops and Products 28(2): 190-198.

Liou, T.H. 2004. Evolution of chemistry and morphology during the carbonization and combustion of rice husk. Carbon 42(4): 785-794.

Liu, H., Wang, X., Pan, C. & Liew, K.M. 2012. First-principles study of formaldehyde adsorption on TiO2 rutile (110) and anatase (001) surfaces. Journal of Physical Chemistry C 116(14): 8044-8053.

Liu, H., Zhao, M., Lei, Y., Pan, C. & Xiao, W. 2012. Formaldehyde on TiO2 anatase (101): A DFT study. Computational Materials Science 51(1): 389-395.

Liu, T., Li, F. & Li, X. 2008. TiO2 hydrosols with high activity for photocatalytic degradation of formaldehyde in a gaseous phase. Journal of Hazardous Materials 152(1): 347-355.

Liu, W.J., Zeng, F.X., Jiang, H. & Zhang, X.S. 2011. Preparation of high adsorption capacity bio-chars from waste biomass. Bioresource Technology 102(17): 8247-8252.

Metwally, S.S. & Rizk, H.E. 2014. Preparation and characterization of nano-sized iron-titanium mixed oxide for removal of some lanthanides from aqueous solution. Separation Science and Technology 49(15): 2426-2436.

Mohamad Nor, N., Lau, L.C., Lee, K.T. & Mohamed, A.R. 2013. Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control - A review. Journal of Environmental Chemical Engineering 1(4): 658-666.

Nie, L., Yu, J., Li, X., Cheng, B., Liu, G. & Jaroniec, M. 2013. Enhanced performance of NaOH-modified Pt/TiO2 toward room temperature selective oxidation of formaldehyde. Journal of Environmental Science & Technology 47(6): 2777-2783.

Pendergrass, S.M. 2003. Hydrocarbons, Aromatic. NIOSH Manual of Analytical Methods (NMAM), 4th ed. 127: 1-7.

Pua, F.L., Zakaria, S., Chia, C.H., Fan, S.P., Rosenau, T., Potthast, A. & Liebner, F. 2013. Solvolytic liquefaction of oil palm empty fruit bunch (EFB) fibres: Analysis of product fractions using FTIR and pyrolysis-GCMS. Sains Malaysiana42(6): 793-799.

Qiu, H., Lv, L., Pan, B., Zhang, Q., Zhang, W. & Zhang, Q. 2009. Critical review in adsorption kinetic models. Journal of Zhejiang University Science A10(5): 716-724.

Rafatullah, M., Sulaiman, O., Hashim, R. & Ahmad, A. 2010. Adsorption of methylene blue on low-cost adsorbents: A review. Journal of Hazardous Materials 177(1-3): 70-80.

Rask, J., Kecsks, T. & Kiss, J. 2004. Adsorption and reaction of formaldehyde on TiO2-supported Rh catalysts studied by FTIR and mass spectrometry. Journal of Catalysis 226(1): 183-191.

Rudzinski, W. & Panczyk, T. 2000. Kinetics of isothermal adsorption on energetically heterogeneous solid surfaces: A new theoretical description based on the statistical rate theory of interfacial transport. The Journal of Physical Chemistry B 104(39): 9149-9162.

Seyahmazegi, E.N., Mohammad-Rezaei, R. & Razmi, H. 2016. Multiwall carbon nanotubes decorated on calcined eggshell waste as a novel nano-sorbent: Application for anionic dye Congo red removal. Chemical Engineering Research and Design 109: 824-834.

Simate, G.S., Maledi, N., Ochieng, A., Ndlovu, S., Zhang, J. & Walubita, L.F. 2016. Coal-based adsorbents for water and wastewater treatment. Journal of Environmental Chemical Engineering 4(2): 2291-2312.

Singh, R.P., Embrandiri, A., Ibrahim, M.H. & Esa, N. 2011. Management of biomass residues generated from palm oil mill: Vermicomposting a sustainable option. Resources, Conservation and Recycling 55(4): 423-434.

Suhas, Carrott, P.J.M. & Ribeiro Carrott, M.M.L. 2007. Lignin - From natural adsorbent to activated carbon: A review. Bioresource Technology 98: 2301-2312.

Tan, I.A.W., Ahmad, A.L. & Hameed, B.H. 2009. Fixed-bed adsorption performance of oil palm shell-based activated carbon for removal of 2,4,6-trichlorophenol. Bioresource Technology 100(3): 1494-1506.

Tan, I., Ahmad, A. & Hameed, B. 2009. Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2, 4, 6-trichlorophenol on oil palm empty fruit bunch-based activated carbon. Journal of Hazardous Materials 164: 473-482.

Tasbihi, M., Štangar, U.L., Škapin, A.S., Ristić, A., Kaučič, V. & Tušar, N.N. 2010. Titania-containing mesoporous silica powders: Structural properties and photocatalytic activity towards isopropanol degradation. Journal of Photochemistry and Photobiology A: Chemistry 216(2-3): 167-178.

Yakout, S.M. & Daifullah, A.A.M. 2014. Adsorption/desorption of BTEX on activated carbon prepared from rice husk. Desalination and Water Treatment 52(22-24): 4485-4491.

Tseng, J.Y., Chang, C.Y., Chang, C.F., Chen, Y.H., Chang, C.C., Ji, D.R., Chiu, C.Y. & Chiang, P.C. 2009. Kinetics and equilibrium of desorption removal of copper from magnetic polymer adsorbent. Journal of Hazardous Materials 171(1- 3): 370-377.

Wang, S., Ang, H.M. & Tade, M.O. 2007. Volatile organic compounds in indoor environment and photocatalytic oxidation: State of the art. Environment International 33(5): 694-705.

Yu, H., Zhang, K. & Rossi, C. 2007. Theoretical study on photocatalytic oxidation of VOCs using nano-TiO2 photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry 188(1): 65-73.

 

*Corresponding author; email: linda@ukm.edu.my

 

 

 

previous