Sains Malaysiana 46(8)(2017): 1241–1248

http://dx.doi.org/10.17576/jsm-2017-4608-09

 

Effects of Biotic and Abiotic Environmental Stimuli on the Morphology and Biomass Allocation of Mimosa pigra L.

(Kesan Rangsangan Persekitaran Biotik dan Abiotik ke atas Morfologi dan Pengagihan Biojisim Mimosa pigra L.)

 

NUR-ZHAFARINA A.* & ASYRAF M.

 

School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia

 

Received: 2 February 2016/Accepted: 3 February 2017

 

ABSTRACT

The main focus of this study was to examine the morphology of Mimosa pigra, an invasive weed in response to artificial biotic and abiotic stressors. Seedlings of M. pigra were subjected to stressors such as seed sowing density, leaf defoliation and water regime. Comparatively, morphological performance related to different sowing practices differed significantly (p<0.05), as seedlings that grew from high density populations had lean and outstanding apical growth. A comparison between the four different levels of defoliation on the morphological changes revealed that the increase in leaf defoliation significantly decreased the plant morphological traits (i.e. height, stem diameter and flower bud productivity) and biomass allocation. Relatively low growth performance was found in plants subjected to 100% defoliation, with markedly lower flower bud productivity in comparison with 0%, 25% and 50% (no flower buds compared to 27, 13 and 6 flower buds, respectively). For water stress treatment, M. pigra showed no significant difference (p>0.05) in morphological performance under different levels of water regime. However, seedlings that received low water (LW) treatment showed better growth performance than seedlings that received high water (HW) treatment, which had the lowest morphological traits and biomass allocation.

 

Keywords: Abiotic; biotic; environmental stressor; Mimosa pigra; morphological traits

 

ABSTRAK

Fokus utama penyelidikan ini adalah mengkaji tindak balas Mimosa pigra terhadap tekanan biotik dan abiotik tiruan. Anak benih M. pigra telah dikenakan tekanan kepadatan penyemaian benih, pemotongan daun dan rejim air. Secara perbandingan, prestasi morfologi bagi kesemua kepadatan yang berlainan menunjukkan perbezaan yang ketara (p<0.05) disebabkan anak benih yang tumbuh daripada kepadatan penyemaian benih tinggi mempunyai pertumbuhan atas yang kurus dan tinggi berbanding dengan anak benih daripada kepadatan yang lain. Perbandingan antara empat tahap pemotongan daun yang berbeza terhadap perubahan morfologi M. pigra menunjukkan bahawa peningkatan pemotongan daun secara ketara mengurangkan ciri morfologi (tinggi, diameter batang dan penghasilan kudup bunga) dan pengagihan biojisim. Prestasi pertumbuhan relatif yang rendah telah ditunjukkan oleh pokok yang dikenakan 100% pemotongan dengan penghasilan kudup bunga yang sangat rendah berbanding dengan 0%, 25% dan 50% pemotongan (tiada kudup bunga berbanding 27, 13 dan 6 kudup bunga). Bagi perlakuan tekanan air, tiada perbezaan morfologi yang ketara (p>0.05) ditunjukkan oleh M. pigra yang telah dikenakan dengan pelbagai tahap tekanan air yang berbeza. Walau bagaimanapun, anak benih yang telah menerima perlakuan air rendah (LW) menunjukkan prestasi pertumbuhan yang lebih baik berbanding anak benih yang menerima perlakuan air tinggi (HW) kerana mempunyai ciri morfologi dan pengagihan biojisim terendah.

 

Kata kunci: Abiotik; biotik; Mimosa pigra; sifat morfologi; tekanan persekitaran

REFERENCES

Asyraf, M. & Crawley, M. 2011. Current status of Mimosa pigraL. infestation in Peninsula Malaysia. Tropical Life Sciences Research 22(1): 41-55.

Ballare, C., Sanchez, R., Scopel, A. & Ghersa, C. 1988. Morphological responses of Datura feroxL. seedlings to the presence of neighbours. Their relationships with canopy microclimate. Oecologia 76(1): 288-293.

Baraza, E., Zamora, R., Hodar, J.A. & Gomez, J.M. 2007. Plant-herbivore interaction: Beyond a binary vision. In Functional Plant Ecology. 2nd ed., edited by Pugnaire, F.I. & Valladares, F. New York: CRC Press. pp. 482-501.

Beilfuss, R. 2007. Adaptive Management of the Invasive Shrub Mimosa pigra at Gorongosa National Park. Gorongosa: Department of Scientific Services, Mozambique.

Berman, M.E. & DeJong, T.M. 1997. Crop load and water stress effects on daily stem growth in peach (Prunus persica). Tree Physiology 17(7): 467-472.

Blum, A. 2011. Plant water relations, plant stress and plant production. In Plant Breeding for Water-limited Environments. New York: Springer. pp. 11-52.

Cabuslay, G.S., Ito, O.O. & Alejal, A.A. 2002. Physiological evaluation of responses of rice (Oryza sativa L.) to water deficit. Plant Science 163(4): 815-827.

Fitter, A.H. & Hay, R.K. 2002. Environmetal Physiology of Plants. 3rd ed. London: Academic Press.

Gimenez, C., Gallardo, M. & Thompson, R.B. 2005. Plant-Water Relations. Oxford, UK: Elsevier.

Gorai, M., Hachef, A. & Neffati, M. 2010. Differential responses in growth and water relationship of Medicago sativa (L.) cv. Gabes and Astragalus gombiformis(Pom.) under water-limited conditions. Emirates Journal of Food and Agriculture 22(1): 1-12.

Hanley, M.E. & Fegan, E.L. 2007. Timing of cotyledon damage affects growth and flowering in mature plants. Plant, Cell and Environment 30(7): 812-819.

Keddy, P.A. 1990. Competitive hierarchies and centrifugal organization in plant communities. In Perspective on Plant Competition, edited by Grace, J.J. & Tilman, D. San Diego: Academic Press. pp. 266-290.

Koptur, S., Smith, C.L. & Lawton, J.H. 1996. Effects of artificial defoliation on reproductive allocation in the common vetch, Vicia sativa (Fabaceae: Pailionoideae). American Journal of Botany 83(7): 886-889.

Kozlowski, T.T. 1997. Responses of woody plants to flooding and salinity. Tree Physiology 17(7): 1-29.

Lambers, H., Chapin, F.S. & Pons, T.L. 2008. Plant Physiological Ecology. 2nd ed. New York: Springer.

Lonsdale, W.M. 1992. The biology of Mimosa pigra. In A Guide to the Management of Mimosa pigra, edited by Harley, K.L.S. Canberra: CSIRO. pp. 8-32.

Lonsdale, W.M. & Abrecht, D.G. 1989. Seedling mortality in Mimosa pigra, an invasive tropical shrub. The Journal of Ecology 77(2): 371-385.

Lonsdale, W.M., Harley, K.L.S. & Gillett, J.D. 1988. Seed bank dynamics in Mimosa pigra, an invasive tropical shrub. Journal of Applied Ecology 25(3): 963-976.

Luvaha, E., Netondo, G.W. & Ouma, G. 2005. Effect of Water Deficit on the Growth of Mango (Mangifera indica) Rootstock Seedlings. Kenya: Department of Botany and Horticulture.

Malaysian Mateorological Department. 2012. Malaysian rainfall forecast 2011. http://www.met.gov.my/index. php?lang=english. Accessed on 12 January 2012.

Mandre, M. 2002. Stress concepts and plants. Forestry Studies 36: 9-16.

Manjeru, P., Madanzi, T., Makeredza, B., Nciizah, A. & Sithole, M. 2007. Effects of water stress at different growth stages on coponents and grain yield of common bean (Phaseolus vulgaris L.). African Crop Science Conference Proceedings 8: 299-303.

Marko, M. 1999. Controlling invasion of the exotic shrub (Mimosa pigra) in tropical Australian wetlands. Restoration & Reclamation Review 4(6): 1-10.

Miller, I.L. 2004. Uses for Mimosa pigra. In Research and Management of Mimosa pigra, edited by Julien, M., Flanagan, G., Heard, T., Hennecke, B., Paynter, Q. & Wilson, C. Australia: CSIRO Entomology. pp. 63-67.

Myers, J.H. & Bazely, D.R. 2003. Ecology and Control of Introduced Plants. UK: Press Syndicate of the University of Cambridge.

Nagashima, H. & Hikosaka, K. 2011. Plants in a crowded stand regulate their height growth so as to maintain similar heights to neighbours even when they have potential advantages in height growth. Annals of Botany 108(1): 207-214.

Napompeth, B. 1983. Preliminary screening of insects for biological control of Mimosa pigraL. in Thailand. In Proceedings of an International Symposium, Mimosa pigra Management, edited by Robert, G.L. & Habeck, D.H. Chiang Mai, Thailand. pp. 121-127.

Orcutt, D.M. & Nilsen, E.T. 2000. Physiology of Plants Under Stress: Soil and Biotic Factors. Canada: John Wiley & Sons.

Orwa, C., Mutua, A., Kindt, R., Jamnadass, R. & Simons, A. 2009. Mimosa pigraL. Agroforestry Database 4.0 4(1): 1-5.

Pires, M.V., de Almeida, A.A.F., Figueiredo, A.L., Gomes, F.P. & Souza, M.M. 2012. Germination and seedling growth of ornamental species of Passiflora under artificial shade. Acta Scientiarum. Agronomy 34(1): 67-75.

Praneetvatakul, S. 2001. An Impact Assessment of ACIAR Research Projects on Biological Control in Thailand. 38. Impact Assessments of forty-nine Thailand/Australia Collaborative Projects Funded by ACIAR during 1983-1995 Working Paper.

Quintero, C. & Bowers, M.D. 2013. Effects of insect herbivory on induced chemical defences and compensation during early plant development in Penstemon virgatus. Annals of Botany 112(4): 1-9.

Richards, J.H. 1993. Physiology of plants recovering from defoliation. Proceedings of the XVII International Grassland Congress. Palmerston North, New Zealand: SIR Publishing. pp. 85-94.

Robert, S.H. 2008. A Dictionary of Biology. USA: Oxford University Press.

Sexton, J.P., McKay, J.K. & Sala, A. 2002. Plasticity and genetic diversity may allow saltcedar to invade cold climates in North America. Ecological Applications 12(6): 1652-1660.

Shao, H.B., Chu, L.Y., Jaleel, C.A. & Zhao, C.X. 2008. Water-deficit stress-induced anatomical changes in higher plants. Comptes Rendus Biologies331(3): 215-225.

Striker, G.G., Insausti, P. & Grimoldi, A.A. 2008. Flooding effects on plants recovering from defoliation in Paspalum dilatatumand Lotus tenuis. Annals of Botany 102(2): 247-254.

Trewavas, A. 2009. What is plant behaviour?. Plant, Cell and Environment 32(6): 606-616.

Wang, F.Z., Wang, Q.B., Kwon, S.Y., Kwak, S.S. & Su, W.A. 2005. Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. Plant Physiology 162: 465-472.

Wirf, L.A. 2006. The effect of manual defoliation and Macaria pallidata(Geometridae) herbivory on Mimosa pigra: Implications for biological control. Biological Control 37(3): 346-353.

Yasari, E. & Golafshan, M.G. 2012. Study of the spatial relationship between seed bank and weed populations and the distribution pattern of weeds in corn fields during the growing season. International Journal of Biology 4(4): 101-111.

                                                                                                       

 

*Corresponding author; email: nurzhafarina@ymail.com

 

 

 

 

previous