Sains Malaysiana 46(9)(2017): 1385–1392

http://dx.doi.org/10.17576/jsm-2017-4609-05

 

Formation and Sustainability of H-mode Regime in Tokamak Plasma via Source Perturbations Based on Two-Field Bifurcation Concept

(Pembentukan dan Kelestarian Rejim H-mod pada Plasma Tokamak melalui Pengusikan

Sumber Berdasarkan Konsep Dua-Bidang Dwicabang)

 

 

B. CHATTHONG1* & T. ONJUN2

 

1Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai,

Songkla, 90110, Thailand

 

2School of Manufacturing Systems and Mechanical Engineering, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, Thailand

 

Received: 31 August 2016/Accepted: 10 November 2016

 

 

ABSTRACT

A set of coupled particle and thermal transport equations is used to study a formation and sustainability of an edge transport barrier (ETB) in tokamak plasmas based on two-field bifurcation. The two transport equations are numerically solved for spatio-temporal profiles of plasma pressure and density. The plasma core transport includes both neoclassical and turbulent effects, where the latter can be suppressed by flow shear mechanism. The flow shear, approximated from the force balance equation, is proportional to the product of pressure and density gradients, resulting in non-linearity behaviors in this calculation. The main thermal and particle sources are assumed to be localized near plasma center and edge, respectively. It is found that the fluxes versus gradients regime illustrates bifurcation nature of the plasma. This picture of the plasma implies hysteresis properties in fluxes versus gradients space. Hence, near marginal point, the perturbation in thermal or particle sources can trigger an L-H transition. Due to hysteresis, the triggered H-mode can be sustained and the central plasma pressure and density can be enhanced.

 

Keywords: ETB; fusion; L-H transition; plasma; tokamak

 

ABSTRAK

Satu set gandingan zarah dan persamaan angkutan terma digunakan untuk mengkaji pembentukan dan kelestarian halangan angkutan pinggiran (ETB) dalam plasma tokamak berdasarkan dua medan dwicabang. Dua persamaan angkutan diselesaikan secara berangka untuk profil ruang-masa tekanan plasma dan ketumpatan. Teras plasma mengangkut kedua-dua kesan neoklasik dan turbulens, dengan turbulens boleh disekat melalui mekanisme aliran ricih. Aliran ricih, penghampiran daripada persamaan keseimbangan daya, adalah berkadaran dengan produk tekanan dan kecerunan ketumpatan yang mengakibatkan tingkah-laku yang tak linear dalam pengiraan ini. Sumber utama terma dan zarah masing-masing adalah diandaikan setempat berhampiran pusat plasma dan pinggiran. Didapati bahawa rejim kecerunan menggambarkan dwicabang semula jadi plasma. Gambaran plasma ini membayangkan sifat histeresis dalam fluks berbanding ruang kecerunan. Oleh yang demikian, berhampiran titik marginal, pengusikan di dalam sumber terma atau zarah boleh mencetuskan peralihan L-H. Oleh sebab histeresis, pencetus H-mod dapat dikekalkan dan ketumpatan tekanan tengah plasma boleh dipertingkatkan.

 

Kata kunci: ETB; lakuran; plasma; peralihan L-H; tokamak

 

REFERENCES

 

Aymar, R., Barabaschi, P. & Shimomura, Y. 2002. The ITER design. Plasma Physics and Controlled Fusion 44: 519.

Carreras, B.A., Diamond, P.H., Liangs, Y.M., Lebedev, V. & Newman, D. 1994. Dynamics of L to H bifurcation. Plasma Physics and Controlled Fusion 36: A93.

Chatthong, B. & Onjun, T. 2016. Understanding roles of E×B flow and magnetic shear on the formation of internal and edge transport barriers using two-field bifurcation concept. Nuclear Fusion 56: 016010.

Chatthong, B. & Onjun, T. 2015. Locality effects on bifurcation paradigm of L-H transition in tokamak plasmas. Songklanakarin Journal of Science and Technology 37: 719-725.

Diamond, P.H., Lebedev, V.B., Newman, D.E. & Carreras, B.A. 1995. Dynamics of spatiotemporally propagating transport barriers. Physics of Plasmas (1994-present) 2: 3685-3695.

Dimits, A.M., Bateman, G., Beer, M.A., Cohen, B.I., Dorland, W., Hammett, G.W., Kim, C., Kinsey, J.E., Kotschenreuther, M., Kritz, A.H., Lao, L.L., Mandrekas, J., Nevins, W.M., Parker, S.E., Redd, A.J., Shumaker, D.E., Sydora, R. & Weiland, J. 2000. Comparisons and physics basis of tokamak transport models and turbulence simulations. Physics of Plasmas 7: 969-983.

Garbet, X., Mantica, P., Ryter, F., Cordey, G., Imbeaux, F., Sozzi, C., Manini, A., Asp, E., Parail, V., Wolf, R. & the JET EFDA Contributors. 2004. Profile stiffness and global confinement. Plasma Physics and Controlled Fusion 46: 1351.

Hinton, F.L. 1991. Thermal confinement bifurcation and the L- to H-mode transition in tokamaks. Physics of Fluids B: Plasma Physics 3: 696-704.

Hinton, F.L. & Staebler, G.M. 1993. Particle and energy confinement bifurcation in tokamaks. Physics of Fluids B: Plasma Physics 5: 1281-1288.

Hubbard, A.E. 2000. Physics and scaling of the H-mode pedestal. Plasma Physics and Controlled Fusion 42(Supplement 5A).

Iguchi, H., Ida, K., Yamada, H., Itoh, K., Itoh, S.I., Matsuoka, K., Okamura, S., Sanuki, H., Yamada, I., Takenaga, H., Uchino, K. & Muraoka, K. 1994. The effect of magnetic field configuration on particle pinch velocity in compact helical system (CHS). Plasma Physics and Controlled Fusions 36(7): 1091.

Itoh, K. 1994. Theoretical progress on H-mode physics. Plasma Physics and Controlled Fusion 36: A307.

Itoh, K., Itoh, S.I. & Fukuyama, A. 1999. Transport and Structural Formation in Plasmas. Bristol: IOP Publishing.

Itoh, S.I. & Itoh, K. 1988. Model of L to H-mode transition in tokamak. Physical Review Letters 60: 2276.

Jhang, H., Kim, S.S. & Diamond, P.H. 2012. Role of external torque in the formation of ion thermal internal transport barriers. Physics of Plasmas 19: 042302.

Lebedev, V. B. & Diamond, P.H. 1997. Theory of the spatiotemporal dynamics of transport bifurcations. Physics of Plasmas 4: 1087-1096.

Malkov, M.A. & Diamond, P.H. 2009. Weak hysteresis in a simplified model of the L-H transition. Physics of Plasmas (1994-present) 16: 012504.

Malkov, M.A. & Diamond, P.H. 2008. Analytic theory of L --> H transition, barrier structure, and hysteresis for a simple model of coupled particle and heat fluxes. Physics of Plasmas 15: 122301.

Pankin, A.Y., Bateman, G., Brennan, D.P., Schnack, D.D., Snyder, P.B., Voitsekhovitch, I., Kritz, A.H., Kruger, S., Janeschitz, G., Onjun, T., Pacher, G.W. & Pacher, H.D. 2005. ELM  riggering conditions for the integrated modeling of H-mode plasmas. Czechoslovak Journal of Physics 55: 367-380.

Ryter, F., Suttrop, W., Brüsehaber, B., Kaufmann, M., Mertens, V., Murmann, H., Peeters, A.G., Stober, J., Schweinzer, J., Zohmdag H. & ASDEX Upgrade Team. 1998. H-mode power threshold and transition in ASDEX Upgrade. Plasma Physics and Controlled Fusion 40: 725.

Shaing, K.C. & Crume, E.C. 1989. Bifurcation theory of poloidal rotation in tokamaks: A model for L-H transition. Physical Review Letters 63: 2369.

Snipes, J.A. & the International H-mode Threshold Database Working Group. 2000. Latest results on the H-mode threshold using the international H-mode threshold database. Plasma Physics and Controlled Fusion 42: A299.

Thomas, D. M., Groebner, R. J., Burrell, K. H., Osborne, T.H. & Carlstrom, T.N. 1998. The back transition and hysteresis effects in DIII-D. Plasma Physics and Controlled Fusion 40: 707.

Toda, S., Itoh, S.I., Yagi, M., Fukuyama, A. & Itoh, K. 1996. Double hysteresis in L/H transition and compound dithers. Plasma Physics and Controlled Fusion 38: 1337.

Wagner, F. 2007. A quarter-century of H-mode studies. Plasma Physics and Controlled Fusion 49: B1.

Wesson, J. 2004. Tokamaks. New York: Clarendon Press.

 

 

*Corresponding author; email: boonyarit.ch@psu.ac.th

 

 

 

previous