Sains Malaysiana 46(9)(2017): 1421–1428

http://dx.doi.org/10.17576/jsm-2017-4609-10

 

Effects of Elevated Atmospheric CO2 on Photosynthesis, Growth and Biomass in Shorea platycarpa F. Heim (Meranti Paya)

(Kesan Peningkatan CO2 dalam Atmosfera terhadap Fotosintesis, Pertumbuhan dan Biojisim Shorea platycarpa F. Heim (Meranti Paya))

 

NOR LAILATUL WAHIDAH, M.1,4*, WAN JULIANA, W.A.,1 NIZAM, M.S.1,3 & CHE RADZIAH, C.M.Z.2

 

1School of Environmental & Natural Resource Sciences, Faculty of Science & Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2School of Biosciences & Biotechnology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

3Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

4School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA

Cawangan Pahang, Kampus Jengka, 26400 Bandar Tun Abdul Razak, Pahang Darul Makmur

Malaysia

 

Received: 31 August 2016/Accepted: 1 April 2017

 

 

ABSTRACT

Elevated atmospheric CO2 is widely reported to stimulate the plant growth and affect plant physiological processes. However, studies on the respond of tropical plant species to elevated CO2 are quite limited and remain largely unknown. The objective of this study was to investigate the effects of elevated atmospheric CO2 treatments on the photosynthetic characteristics, growth and biomass in Shorea platycarpa. Saplings of S. platycarpa were grown for seven months in the open roof gas chamber supplied with elevated CO2 (800±50 μmol mol-1) and in the shade house with ambient CO2 (400±50 μmol mol-1). Measurements of S. platycarpa growth and photosynthetic characteristics were made at frequent intervals. Biomass characteristics were determined using destructive methods after seven months of treatment and nondestructive method was used for leaf area index (LAI) determination. Photosynthetic rate (A) of S. platycarpa was not significantly affected by elevated CO2. Increased water use efficiency (WUE) of S. platycarpa grown in elevated CO2 was due to the reduced stomatal conductance (gs) and transpiration rate (E). The CO2 elevation had no significant effect on the S. platycarpa relative growth rates (RGR) and biomass but significantly reduced the leaf area. A weak correlation was found between photosynthetic rate (A) and relative growth rate (RGR). The results clearly showed that photosynthesis, growth rate and biomass of S. platycarpa were not significantly enhanced by elevated CO2. The findings indicated that elevated CO2 did not affect a relatively slow growing and a late successional peat swamp tree species.

 

Keywords: Biomass; elevated CO2; growth rate; photosynthesis; Shorea platycarpa

 

ABSTRAK

Peningkatan CO2 dalam atmosfera telah dilaporkan secara meluas kerana dapat meningkatkan pertumbuhan pokok dan memberi kesan kepada proses fisiologi pokok. Namun begitu, kajian ke atas tindak balas spesies pokok tropika terhadap peningkatan CO2 agak terhad dan sebahagian besarnya tidak diketahui. Objektif kajian ini ialah untuk mengkaji kesan rawatan peningkatan CO2 dalam atmosfera ke atas ciri fotosintesis, pertumbuhan dan biojisim Shorea platycarpa. Anak pokok S. platycarpa telah ditanam selama tujuh bulan di dalam bilik gas dengan bumbung terbuka dan dibekalkan dengan peningkatan CO2 (800±50 μmol mol-1) dan di dalam rumah teduh dengan ambien CO2 (400±50 μmol mol-1). Pengukuran secara selang berulang ke atas pertumbuhan S. platycarpa dan ciri fotosintesis telah dibuat. Selepas tujuh bulan rawatan, ciri biojisim telah ditentukan dengan menggunakan kaedah musnah dan tanpa musnah untuk indeks luas daun (LAI). Kadar fotosintesis (A) S. platycarpa tidak dipengaruhi secara signifikan oleh peningkatan CO2. Peningkatan kecekapan penggunaan air (WUE) S. platycarpa yang hidup di CO2 berganda disebabkan oleh pengurangan stomata konduktans (gs) dan kadar transpirasi (E). Peningkatan CO2 tidak memberi kesan signifikan ke atas kadar pertumbuhan relatif (RGR) dan biojisim tetapi mengurangkan luas daun secara signifikan. Korelasi lemah wujud antara kadar fotosintesis (A) dengan kadar pertumbuhan relatif (RGR). Hasil jelas menunjukkan bahawa fotosintesis, kadar pertumbuhan dan biojisim S. platycarpa tidak meningkat secara signifikan dengan peningkatan CO2. Penemuan tersebut memberi indikasi bahawa peningkatan CO2 tidak memberi kesan kepada spesies pokok paya gambut dengan ciri pertumbuhan perlahan secara relatif dan lewat sesaran.

Kata kunci: Biojisim; fotosintesis; kadar pertumbuhan; peningkatan CO2; Shorea platycarpa

REFERENCES

Anten, N.P.R., Hirose, T., Onoda, Y., Kinugasa, T., Kim, H.Y., Okada, M. & Kobayashi, K. 2003. Elevated CO2 and nitrogen availability have interactive effects on canopy carbon gain in rice. New Phytologist 161: 459-471.

Ashton, P.S., Givnish, T.J. & Appanah, S. 1988. Staggered flowering in the Dipterocarpaceae: New insights into floral induction and the evolution of mast fruiting in the aseasonal tropics. The American Naturalist 132(1): 44-66.

Cheng, S., Moore, B. & Seemann, J.R. 1998. Effects of short- and long-term elevated CO2 on the expression of ribulose-1,5- bisphosphate carboxylase/oxygenase genes and carbohydrate accumulation in leaves of Arabidopsis thaliana (L.) Heynh. Plant Physiology 116: 715-723.

De Deyn, G.B., Cornelissen, J.H.C. & Bardgett, R.D. 2008. Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology Letters 11(5): 516-531.

Dijkstra, P., Hymus, G., Colavito, D., Vieglais, D.A., Cundari, C.M. & Johnson, D.P. 2002. Elevated atmospheric CO2 stimulates aboveground biomass in a fire-regenerated scrub-oak ecosystem. Global Change Biology 8: 90-103.

Faria, T., Wilkins, D., Besford, R.T., Pereira, M.V.J.S. & Chaves, M.M. 1996. Growth at elevated C02 leads to down-regulation of photosynthesis and altered response to high temperature in Quercus suber L . seedlings. Journal of Experimental Botany 47(304): 1755-1761.

Gan, K.S., Lim, S.C. & Choo, K.T. 1998. Timber Notes - Light Hardwoods (I). (Meranti bakau, Dark red meranti, Light red meranti, White meranti, Yellow meranti). Timber Technology Bulletin No. 9.

Hamzah, K.A., Parlan, I., Kassim, A.R., Hassan, C.H., Akeng, G. & Said, N.M. 2009. Ecological characteristics of a Gonystylus bancanus-rich area in Pekan Forest Reserve, Pahang, Malaysia. Tropical Life Sciences Research 20(2): 15-27.

IPCC. 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Core Writing Team, Pachauri, R.K. & Meyer, L.A. IPCC, Geneva, Switzerland. p. 151.

Jach, M.E. & Ceulemans, R. 1999. Effects of elevated atmospheric CO2 on phenology, growth and crown structure of Scots pine (Pinus sylvestris) seedlings after two years of exposure in the field. Tree Physiology 19: 289-300.

Karnosky, D.F. 2003. Impacts of elevated atmospheric CO2 on forest trees and forest ecosystems: Knowledge gaps. Environment International 29: 161-169.

Kenzo, T., Yoneda, R., Matsumoto, Y., Azani, A.M. & Majid, M.N. 2011. Growth and photosynthetic response of four Malaysian indigenous tree species under different light conditions. Journal of Tropical Forest Science 23(3): 271- 281.

Kim, H.Y., Lieffering, M., Miura, S., Kobayashi, K. & Okada, M. 2001. Growth and nitrogen uptake of CO2-enriched rice under field conditions. New Phytologist 150: 223-229.

Kirschbaum, M.U.F. 2011. Does enhanced photosynthesis enhance growth? Lessons learned from CO2 enrichment studies. Plant Physiology 155(1): 117-124.

Leakey, A.D.B., Bishop, K. & Ainsworth, E. 2012. A multi-biome gap in understanding of crop and ecosystem responses to elevated CO2. Current Opinion in Plant Biology 15(3): 228-236.

Liang, N., Tang, Y. & Okuda, T. 2001. Is elevation of carbon dioxide concentration beneficial to seedling photosynthesis in the understory of tropical rain forests ? Tree Physiology 21: 1047-1055.

Long, S.P., Ainsworth, E.A., Rogers, A. & Ort, D.R. 2004. Rising atmospheric carbon dioxide: Plants FACE the future. Annu. Rev. Plant Biol. 55: 591-628.

Lovelock, C.E., Virgo, A., Popp, M., Winter, K. & Environmental, S. 1999. Effects of elevated CO2 concentrations on photosynthesis, growth and reproduction of branches of the tropical canopy tree species, Luehea seemannii Tr. & Planch. Plant, Cell and Environment 22: 49-59.

Mooney, H.A. & Winner, W.E. 1991. Partitioning response of plants to stress. In Response of Plants to Multiple Stresses, edited by Mooney, H.A., Winner, W.E. & Pell, E.J. New York: Academic Press.

Novriyanti, E., Watanabe, M., Kitao, M., Utsugi, H. & Uemura, A. 2012. High nitrogen and elevated [CO2] effects on the growth, defense and photosynthetic performance of two eucalypt species. Environmental Pollution 170: 124-130.

Oberbauer, S.V., Strain, B.R. & Fetcher, N. 1985. Effects of CO2 enrichment on seedling physiology and growth of two tropical trees. Physiologia Plantarum 65: 352-356.

Oikawa, S., Okada, M. & Hikosaka, K. 2013. Effects of elevated CO2 on leaf area dynamics in nodulating and non- nodulating soybean stands. Plant Soil 373: 627-639.

Poorter, H. & Pérez-Soba, M. 2001. The growth response of plants to elevated CO2 under non-optimal environmental conditions. Oecologia 129(1): 1-20.

Prior, S., Runion, G., Marble, S., Rogers, H., Gilliam, C. & Allen Torbert, H. 2011. A review of elevated atmospheric CO2 effects on plant growth and water relations: Implications for horticulture. Horticultural Science 46(2): 158-162.

Rasineni, G.K., Guha, A. & Reddy, A.R. 2011. Responses of Gmelina arborea, a tropical deciduous tree species, to elevated atmospheric CO2: Growth, biomass productivity and carbon sequestration efficacy. Plant Science 181(4): 428-438.

Watanabe, M., Watanabe, Y., Kitaoka, S., Utsugi, H., Kita, K. & Koike, T. 2011. Growth and photosynthetic traits of hybrid larch F1 (Larix gmelinii var. japonica × L. kaempferi) under elevated CO2 concentration with low nutrient availability. Tree Physiology 31: 965-975.

Yazaki, K., Funada, R.Y.O., Mori, S., Maruyama, Y., Abaimov, A.P., Kayama, M. & Koike, T. 2001. Growth and annual ring structure of Larix sibirica grown at different carbon dioxide concentrations and nutrient supply rates. Tree Physiology 3: 1223-1229.

Yazaki, K., Maruyama, Y., Mori, S., Koike, T. & Funada, R. 2005. Effects of elevated carbon dioxide concentration on wood structure and formation in trees. In Plant Responses to Air Pollution and Global Changes, edited by Omasa, K., Nouchi, I. & De Kok, L.J. Tokyo: Springer-Verlag. pp. 89-97.

Zagt, R.J. & Werger, M.J.A. 1998. Community structure and the demography of primary species in tropical rain forest. In Dynamics of Tropical Communities, edited by Newbery, D.M., Prins, H.H.T. & Brown, N.D. Oxford: Blackwell Science. pp. 193-219.

 

*Corresponding author; email: lailatul34@gmail.com

 

 

 

previous