Sains Malaysiana 46(9)(2017): 1541–1548

http://dx.doi.org/10.17576/jsm-2017-4609-24

 

Kinetics of Surfactin Production by Bacillus subtilis in a 5 L Stirred-tank Bioreactor

(Kinetik Penghasilan Surfaktin oleh Bacillus subtilis dalam Tangki Pengacau Bioreaktor 5 L)

 

MUHAMMAD QADRI EFFENDY MUBARAK1, SITI HAJAR MOHAMAD JUFRI1, SHIKH MOHD SHAHRUL NIZAN SHIKH ZAHAR1, MOHD SAHAID KALIL2, AIDIL ABDUL HAMID3 & MOHD HAFEZ MOHD ISA4*

 

1Faculty of Science and Technology, Universiti Sains Islam Malaysia, Bandar Baru Nilai

71800 Nilai, Negeri Sembilan Darul Khusus, Malaysia

 

2Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

3Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

4Faculty of Science and Technology, Universiti Sains Islam Malaysia, Bandar Baru Nilai

71800 Nilai, Negeri Sembilan Darul Khusus, Malaysia

 

Received: 7 June 2016/Accepted: 9 March 2017

 

ABSTRACT

A kinetic model of bacterial growth and metabolite production can adequately explain the trends and interaction of important parameters in a fermentation process. Production of surfactin by two bacterial strains, namely, Bacillus subtilis MSH1 and Bacillus subtilis ATCC 21322, in a 5 L bioreactor was investigated using Cooper’s media with 4% (v/v) glucose. The present kinetic study was carried out in order to determine the correlation between microbial cell growth, surfactin production and glucose consumption. Batch fermentation was performed by cultivation of each selected strain in a bioreactor at 30°C for 55 h. The experimental results showed production of surfactin in the culture medium after 5 and 10 h of incubation for B. subtilis ATCC 21332 and B. subtilis MSH1, respectively, at which the bacterial cells were at an early stage of the log phase. The maximum concentration of surfactin (Pmax) achieved by B. subtilis MSH1 and B. subtilis ATCC 21332 was 226.17 and 447.26 mg/L, respectively. The kinetic study of bacterial cell growth of both strains indicated that B. subtilis MSH1 had a specific growth rate (μmax) of 0.224 h-1 and attained a maximum biomass concentration (Xmax) as high as 2.90 g/L after 28 h of fermentation, while B. subtilis ATCC 21332, with μmax of 0.087 h-1, attained an Xmax of 2.62 g/L after 45 h of incubation. B. subtilis MSH1 showed higher growth kinetics, thus exhibited higher values of μmax and Xmax compared with B. subtilis ATCC 21332 under identical fermentation conditions. The Pmax achieved by B. subtilis ATCC 21332 was 447.26 mg/L, two times higher than that achieved by B. subtilis MSH1 (226.17 mg/L). The results obtained provide kinetics information including values of Pmax, μmax and Xmax for better understanding of interactions of bacterial cell growth and glucose consumption towards surfactin production by a commercial strain of B. subtilis ATCC 21332 and a local isolate of B. subtilis MSH1.

 

Keywords: Bacillus subtilis ATCC 21322; Bacillus subtilis MSH1; Cooper’s media; kinetic study; surfactin production

 

ABSTRAK

Model kinetik pertumbuhan bakteria dan penghasilan metabolit boleh menjelaskan aliran dan interaksi parameter yang penting untuk proses penapaian. Penghasilan surfaktin oleh dua jenis bakteria, Bacillus subtilis MSH1 dan Bacillus subtilis ATCC 21332; di dalam bioreaktor 5 L telah dikaji menggunakan media Cooper dengan 4% (v/v) glukosa. Kajian kinetik ini dijalankan bagi menentukan korelasi antara pertumbuhan sel mikrob, penghasilan surfaktin dan penggunaan glukosa. Penapaian bakteria telah dilakukan melalui pengkulturan kedua-dua jenis bakteria di dalam bioreaktor pada 30°C selama 55 jam. Keputusan uji kaji menunjukkan penghasilan surfaktin di dalam kultur media B. subtilis ATCC 21332 dan B. subtilis MSH1, masing-masing selepas tempoh pengeraman selama 5 dan 10 jam dengan sel bakteria pada tempoh berkenaan berada pada peringkat awal fasa log. Kepekatan maksimum surfaktin (Pmax) dicapai olehB. subtilis MSH1 danB. subtilis ATCC 21332 masing-masing pada 226.17 dan 447.26 mg/L. Kajian kinetik pertumbuhan sel bakteria bagi kedua-dua jenis bakteria menunjukkan bahawaB. subtilis MSH1 memiliki kadar pertumbuhan spesifik(μmax) pada 0.224 h-1 dan mencapai kepekatan maksimum biojisim (Xmax) setinggi 2.90 g/L selepas 28 jam tempoh penapaian, manakalaB. subtilis ATCC 21332 dengan μmax pada 0.087 h-1, mencapai Xmax pada 2.62 g/L selepas 45 jam tempoh pengeraman. B. subtilis MSH1 menunjukkan kinetik pertumbuhan yang lebih tinggi turut menyebabkan nilai μmax dan Xmax menjadi lebih tinggi berbandingB. subtilis ATCC pada kaedah penapaian yang sama. Nilai Pmax yang dicapai oleh B. subtilis ATCC 21332 adalah 447.26 mg/L, dua kali ganda lebih tinggi daripada yang dicapai oleh B. subtilis MSH1 (226.17 mg/L). Keputusan yang diperoleh telah menyediakan maklumat kinetik penting termasuk nilai Pmax, μmax dan Xmax untuk menyumbang pemahaman mengenai interaksi pertumbuhan sel bakteria dan penggunaan glukosa terhadap pengeluaran surfaktin oleh bakteria komersilB. subtilis ATCC 21332 dan pencilan tempatanB. subtilis MSH1.

 

Kata kunci: Bacillus subtilis ATCC 21332; Bacillus subtilis MSH1; kajian kinetik; media Cooper; penghasilan surfaktin

REFERENCES

 

Al-Araji, L., Raja Abd. Rahman, R.N.Z., Basri, M. & Salleh, A.B. 2007. Microbial surfactant. Asia Pac. J. Mol. Biol. Biotechnol. 15(3): 99-105.

Banat, I.M., Franzetti, A., Gandolfi, I., Bestetti, G., Martinotti, M.G., Fracchia, L., Smyth, T.J. & Marchant, R. 2010. Microbial biosurfactants production, applications and future potential. Appl. Microbiol. Biotechnol. 87: 427-444.

Bradley, J. & Schmid, R.D. 1991. Optimisation of a biosensor for in situ fermentation monitoring of glucose concentration. Biosens. Bioelectron6: 669-674.

Casas, J., Garcia, D.L.S. & Garcia-Ochoa, F. 1997. Optimization of a synthetic medium for Candida bombicolagrowth using factorial design experiment. Enzyme Microb. Tech. 21: 221-229.

Chen, C., Bake, S. & Darton, R. 2007. The application of a high throughput analysis method for the screening of potential biosurfactant from natural source. J. Microbiol. Meth.70: 503-510.

Cooper, D., Macdonald, C.R., Duff, S. & Kosaric, N. 1981. Enhance production of surfactin from Bacillus subtilis by continuos product removal and metal cation addition. J. Appl. Environ. Microbiol.42: 408-412.

Danielsson, B. 1991. Fermentation monitoring. Curr. Opin. Biotech.2: 17-22.

Davis, D., Lynch, H. & Varley, J. 2001. The application of foaming for the recovery of surfactin from B. subtilis ATCC 21332 cultures. Enzyme Microb. Tech. 28: 346-354.

Davis, D., Lynch, H. & Varley, J. 1999. The production of surfactin in batchculture by Bacillus subtilis ATCC 21332 is strongly influenced by the conditions of nitrogen metabolism. Enzyme Microb. Tech. 25: 322-329.

de Oliveira, F.D.W., Franca, I.W.L., Felix, A.K.N., Martins, J.L., Giro, M.E.A., Melo, V.M.M. & Goncalves, L.R.B. 2013. Kinetic study of biosurfactant production by Bacillus subtilis LAM005 grown in clarified cashew apple juice. Colloid Surface B 101: 34-43.

Dondo, R.G. 2001. A method for detection and diagnosis on batch fermentations. ISA Transactions 42(1): 135-147.

Driks, A. 2002. Overview: Development in bacteria: Spore formation in Bacillus subtilis. Journal of Cellular and Molecular Life Sciences 59: 389-391.

Fernandes, P., de Aruda, I. & dos Santos, A. 2007. Antimicrobial activity of surfactants produced by Bacillus subtilis R14 against multidrug bacteria. Braz. J. Microbiol. 38: 704-709.

Fox, S.L. & Bala, G.A. 2000. Production of surfactant from Bacillus subtilis ATCC 21332 using potato substrate. Bioresource Technol. 75: 235-240.

Georgiou, G., Lin, S. & Sharma, M. 1992. Surface-active compounds from microorganisms. Biotechnology 10: 60-65.

Hanko, V.P. & Rohrer, J.S. 2000. Determination of carbohydrates, sugar alcohols, and glycolsin cells cultures and fermentation broths using high-performance anion-exchange chromatogrpahy with pulsed amperometric detection. Anal. Biochem.283: 192-199.

Isa, M.H.M., Coraglia, D., Frazier, R. & Jauregi, P. 2007. Recovery and purification of surfactin from fermentation broth by a two-step ultrafiltration process. J. Membrane Sci. 296: 51-57.

Isa, M.H.M., Frazier, R. & Jauregi, P. 2008. A further study of the recovery and purification of surfactin from fermentation broth by membrane filtration. J. Sep. Purif. Technol. 64: 176-182.

Joshi, S., Bhaucha, C. & Desai, A.J. 2008. Production of biosurfactant and antifungal compound by fermented food isolat Bacillus subtilis 20B. Bioresource Technol. 99: 4603- 4608.

Kim, H.S., Yoon, B.D., Lee, C.H., Oh, H.M., Katsuragi, T. & Tani, Y. 1997. Production and properties of a lipopeptide biosurfactant from Bacillus subtilis C9. J. Fermentation Bioeng. 84: 41-46.

Kowall, M., Vater, J., Kluge, B., Stein, T., Franke, P. & Ziessow, D. 1998. Separation and characterization of surfactin isoforms produced by Bacillus subtilis OKB 105. J. Colloid Interf. Sci. 204: 1-8.

Lin, S., Carswell, K., Sharma, M. & Georgiau, G. 1994. Continuos production of the lipopeptide biosurfactant of Bacillus licheniformis JF-2. Appl. Microbiol. Biot.41: 281-285.

Mulligan, C.N. 2005. Environmental applications for biosurfactants. Environ. Pollut.133: 183-198.

Neves, L., Oliveira, K., Kobayashi, M., Penna, T. & Converti, A. 2007. Biosurfactant production by cultivation of Bacillus atrophaeusATCC 9372 in semidefined glucose/casein-based media. Appl. Biochem. Biotechnol.136: 136-140.

Nitschke, M. & Pastore, G. 2006. Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater. Bioresource Technol. 97: 336-341.

Okpokwasili, G. & Nweke, C. 2008. Microbial growth and substrate utilization kinetics. Afr. J. Biotechnol. 5(4): 305-317.

Ramirez, I.M., Tsaousi, K., Rudden, M., Marchant, R., Alameda, E.J., Roman, M.G. & Banat, I.M. 2015. Rhamnolipid and surfactin production from olive oil mill waste as sole carbon source. Bioresource Technology 198: 231-236.

Rodrigues, L., Moldes, A., Teixeira, J. & Oliveira, R. 2006. Kinetic study of fermentative biosurfactant production by Lactobacillus strain. J. Biochem. Eng. 28: 109-116.

Shannaq, M. & Isa, M.H.M. 2013. Isolation and molecular identification of surfactin producing B. subtilis. International Conference on Biochemical, Pharmaceutical Sciences and Chemical Engineering, Kuala Lumpur.

Shepard, O. & Mulligan, C. 1987. The production of surfactin by Bacillus subtilis grown on peat hydrolysate. Appl. Microbiol. Biot. 29: 110-116.

Singh, P. & Cameotra, S. 2004. Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol. 22: 142-146.

Sousa, M., Dantas, I.T., Feitosa, F.X., Alencar, A.E.V., Soares, S.A., Melo, V.M.M., Goncalves, L.R.B. & Sant’ana, H.B. 2014. Performance of biosurfactant produced by Bacillus subtilis LAMI005 on the formation of iol/biosurfactant/ water emulsion: Study of phase behavior of emulsified systems. Brazilian Journal of Chemical Engineering 31: 613-623.

Wei, Y-H., Wang, M., Chang, J-S. & Kung, S-S. 2003. Identification of induced acidification in iron-eniched cultures of Bacillus subtilis during biosurfactant fermentation. J. Biosci. Bioeng.96: 174-178.

Wei, Y-H., Lai, C. & Chang, J-S. 2007. Using Taguchi experimental design methods to optimize trace element composition for enhanced surfactin production by Bacillus subtilis ATCC 21332. Process Biochem. 42: 40-45.

Xiao, X., Chen, H., Wang, J. & Ren, C. 2008. Impact of Bacillus subtilis JA, a biocontrol strain of fungal plant pathogens, on arbuscular mycorrhiza formation in zeamays. World J. Microb. Biot. 24: 1133-1137.

Yakimov, M., Amro, M. & Bock, M. 1997. The potential of Bacillus licheniformisstrains for in situ enhanced oil recovery. J. Petrol. Sci. Eng. 18: 147-160.

Zweers, J.C., Barak, L., Becher, D. & Driessen, A. 2008. Towards the development of Bacillus subtilis as a cell factory for membrane proteins and protein complexes. J. Microb. Cell Fact.7: 1-20.

 

*Corresponding author; email: m.hafez@usim.edu.my

 

 

 

 

previous