Sains Malaysiana 47(10)(2018): 2325–2336

http://dx.doi.org/10.17576/jsm-2018-4710-09

 

Effects of PLGA Nanofibre on Osteoarthritic Chondrocytes

(Kesan Gentian Nano PLGA ke atas Sel Kondrosit Osteoartritis)

 

B.S. SHAMSUL1, S.R. CHOWDHURY1*, B.H.I. RUSZYMAH2 & B.M.Y. NOR HAMDAN3

 

1Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia, Clinical Block, Jalan Yaacob Latiff, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia

 

2Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Pre-clinical Block, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia

 

3Department of Orthopedic & Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Clinical Block, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Federal Territory

Malaysia

 

Received: 31 March 2018/Accepted: 5 June 2018

 

ABSTRACT

Chondrocytes obtained from osteoarthritis (OA) joints has been recognized as an abnormal cell; however, it’s proven to have potential in supporting cartilage regeneration. We have isolated chondrocytes from OA joints (OAC) and expanded chondrocytes growth medium (CGM). The growth kinetic, immunophenotyping and cell multilineage differentiation were analyzed to confirm the OAC stemness. The optimal condition to developed PLGA nanofiber with ratio 50:50 were 20% concentration of PLGA, flow rate with 0.3 mL/h, 10 kv voltage and 10 cm distance from nozzle to the collector. The toxicity level, scanning electron microscopy (SEM) and q-PCR analysis was performed in the present study. OAC fulfills the minimal criteria to be known to have stem cell as the cell easily adheres to the culture plate, shows high expression (≥95%) for CD13, CD29, CD44, CD73 and CD90 and less expression (≤2%) for CD45 and HLA-DR and potentially induced to mesodermal multilineage, which is osteocytes, adipocytes, and chondrocytes. Toxicity test showed no adverse effect of PLGA towards the cell. Based on the cell-PLGA nanofiber interaction, difference in fiber size will influence the proliferation of the cell. Nanofibers with 100 nm in size showed high proliferation of OAC and better gene and protein expression compared to monolayer culture. Thus, we concluded that OAC has the potential to be used in cartilage regeneration based on the presence of stem cell markers as similar to the human bone marrow. The cartilage regeneration will be more efficient if OAC cultured on 3D microenvironment as showed in the present study.

 

Keywords: Cytoskeleton; differentiation; electrospinning; osteoarthritis; tissue engineering of cartilage

 

ABSTRAK

Sel kondrosit yang diperoleh daripada sendi pesakit osteoartritis (OA) terbukti berpotensi untuk membantu pertumbuhan semula tulang rawan. Walau bagaimanapun, sel kondroit mempunyai kecenderungan untuk melalui proses pembezaan semasa pengkulturan, maka persekitaran tiga dimensi diperlukan untuk mengatasi masalah pembezaan tersebut. Oleh itu, sel kondrosit yang diisolasi daripada sendi OA (OAC) telah dikulturkan dalam media CGM dan proses analisis seperti pertumbuhan kinetik dan pencirian sel stem dilakukan sebelum disemai ke atas gentian nano yang dihasilkan. Gentian nano PLGA dipilih berdasarkan ciri-ciri versetilnya berserta kondisi optimum kepekatan cecair, kadar aliran, voltan dan jarak dari jarum picagari ke pengumpul yang digunakan. Tahap ketoksikan, pengimbasan mikroskop elektron (SEM) dan analisis q-PCR juga telah dilakukan dalam kajian ini. Keputusan kajian menunjukkan, OAC memenuhi kriteria minimum memiliki ciri sel stem dan ia mudah berpoliferasi di atas plat kultur, ekspresi penanda sel stem yang tinggi (≥95%) untuk CD13, CD29, CD44, CD73 dan CD90 (≤2%) CD45 dan HLA-DR serta berpotensi diinduksi kepada leluhur mesoderm. Gentian nano elektrospun tidak menunjukkan kesan toksik kepada sel malah mempengaruhi proliferasi sel semasa pengkulturan. Berdasarkan interaksi gentian nano PLGA dan OAC, perbezaan saiz gentian akan mempengaruhi proliferasi sel. Gentian nano bersaiz 100 nm telah menunjukkan berlakunya proliferasi OAC yang lebih tinggi dan ekspresi gen dan protein yang lebih baik berbanding dengan kultur monolapisan. Kesimpulannya, OAC berpotensi sebagai sumber sel untuk penjanaan semula tulang rawan berdasarkan kepada ekspresi penanda sel stem seperti yang diekspresikan oleh sumsum tulang manusia. Penjanaan tulang rawan akan lebih berkesan jika OAC dikulturkan di atas persekitaran mikro tiga dimensi seperti yang ditunjukkan di dalam kajian ini.

 

Kata kunci: Elektrospun; kejuruteraan tisu tulang rawan; perbezaan; osteoartritis; sitorangka

REFERENCES

AlFaqeh, H., Nor Hamdan, B.M., Chen, H.C., Aminuddin, B.S. & Ruszymah, B.H. 2012. The potential of intra-articular injection of chondrogenic-induced bone marrow stem cells to retard the progression of osteoarthritis in a sheep model. Experimental Gerontology 47(6): 458-464.

Alsalameh, S., Amin, R., Gemba, T. & Lotz, M. 2004. Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis and Rheumatism 50(5): 1522-1532.

Anderson, D., Markway, B.D., Bond, D., McCarthy, H.E. & Johnstone, B. 2016. Responses to altered oxygen tension are distinct between human stem cells of high and low chondrogenic capacity. Osteoarthritis and Cartilage 24. Stem Cell Research & Therapy: S164.

Caron, M.M., Emans, P.J., Coolsen, M.M., Voss, L., Surtel, D.A., Cremers, A., van Rhijn, L.W. & Welting, T.J. 2012. Redifferentiation of dedifferentiated human articular chondrocytes: Comparison of 2D and 3D cultures. Osteoarthritis and Cartilage 20(10): 1170-1178.

Chua, K.H., Aminuddin, B.S., Fuzina, N.H. & Ruszymah, B.H.I. 2005. Insulin-transferrin-selenium prevent human chondrocyte dedifferentiation and promote the formation of high quality tissue engineered human hyaline cartilage. European Cells and Materials 9: 58-67.

Darling, E.M. & Kyriacos, A.A. 2003. Articular cartilage bioreactors and bioprocesses. Tissue Engineering 9(1): 9-26.

Dimida, S., Barca, A., Cancelli, N., de Benedictis, V., Raucci, M.G. & Demitri, C. 2017. Effects of genipin concentration on cross-linked chitosan scaffolds for bone tissue engineering: Structural characterization and evidence of biocompatibility features. International Journal of Polymer Science 2017: 8410750.

Dua, R., Comella, K., Butler, R., Castellanos, G., Brazille, B., Claude, A., Agarwal, A., Liao, J. & Ramaswamy, S. 2016. Integration of stem cell to chondrocyte-derived cartilage matrix in healthy and osteoarthritic states in the presence of hydroxyapatite nanoparticles. Plos One 11(2): e0149121.

Fernandes, A.M., Herlofsen, S.R., Karlsen, T.A., Küchler, A.M., Fløisand, Y. & Brinchmann, J.E. 2013. Similar properties of chondrocytes from osteoarthritis joints and mesenchymal stem cells from healthy donors for tissue engineering of articular cartilage. PLoS One 8(5): e62994.

Gentile, P., Chiono, V., Carmagnola, I. & Hatton, P.V. 2014. An overview of poly(lactic-co-glycolic) acid (plga)-based biomaterials for bone tissue engineering. International Journal of Molecular Sciences 15(3): 3640-3659.

Hafez, P., Jose, S., Chowdhury, S.R., Ng, M.H., Ruszymah, B.H. & Abdul Rahman Mohd, R. 2016. Cardiomyogenic differentiation of human sternal bone marrow mesenchymal stem cells using a combination of basic fibroblast growth factor and hydrocortisone. Cell Biology International 40(1): 55-64.

Hasmad, H.N., Yusof, M.R., Mohd Razi, Z.R., Haji Idrus, R.B. & Chowdhury, S.R. 2018. Human amniotic membrane with aligned electrospun fiber as scaffold for aligned tissue regeneration. Tissue Engineering Part C: Methods 24(6): 368-378.

Jiang, Y. & Tuan, R.S. 2015. Origin and function of cartilage stem/progenitor cells in osteoarthritis. Nature Reviews: Rheumatology 11(4): 206-212.

Khorsand-Ghayeni, M., Sadeghi, A., Nokhasteh, S. & Molavi, A.M. 2016. Collagen modified PLGA nanofibers as wound-dressing. Proceedings of the 6th International Conference on Nanostructures (ICNS6). March.

Kino-oka Masahiro, Yoshikatsu Maeda, Yuka Ota, Shino Yashiki, Katsura Sugawara, Takeyuki Yamamoto & Masahito Taya. 2005. Process design of chondrocyte cultures with monolayer growth for cell expansion and subsequent three-dimensional growth for production of cultured cartilage. Journal of Bioscience and Bioengineering 100(1): 67-76.

Koh Yong Gon, Yun Jin Choi, Sae Kwang Kwon, Yong Sang Kim & Jee Eun Yeo. 2015. Clinical results and second-look arthroscopic findings after treatment with adipose-derived stem cells for knee osteoarthritis. Knee Surgery, Sports Traumatology, Arthroscopy : Official Journal of the ESSKA 23(5): 1308-1316.

Félix Lanao, R.P., Jonker, A.M., Wolke, J.G.C., Jansen, J.A. van Hest, J.C.M. & Leeuwenburgh, S.C.G. 2013. Physicochemical properties and applications of poly(lactic-co-glycolic acid) for use in bone regeneration. Tissue Engineering Part B: Reviews 19(4): 380-390.

Langer, R. & Vacanti, J.P. 1993. Tissue engineering. Science 260(5110): 920-926.

Liu Mei, Xin Zeng, Chao Ma, Huan Yi, Zeeshan Ali, Xianbo Mou, Song Li, Yan Deng & Nongyue He. 2017. Injectable hydrogels for cartilage and bone tissue engineering. Bone Research 5: 17014.

Liu, S.J., Kau, Y.C., Chou, C.Y., Chen, J.K., Wu, R.C. & Yeh, W.L. 2010. Electrospun PLGA/collagen nanofibrous membrane as early-stage wound dressing. Journal of Membrane Science 355(1-2): 53-59.

Madeira, C., Santhagunam, A., Salgueiro, J.B. & Cabral, J.M.S. 2015. Advanced cell therapies for articular cartilage regeneration. Trends in Biotechnology 33(1): 35-42.

Mano, J.F., Sousa, R.A., Boesel, L.F., Neves, N.M. & Reis, R.L. 2004. Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: State of the art and recent developments. Composites Science and Technology 64(6): 789-817.

Nazempour, A. & Van Wie, B.J. 2016. Chondrocytes, mesenchymal stem cells, and their combination in articular cartilage regenerative medicine. Annals of Biomedical Engineering 44(5): 1325-1354.

Noriega, S.E., Hasanova, G.I., Schneider, M.J., Larsen, G.F. & Subramanian, A. 2012. Effect of fiber diameter on the spreading, proliferation and differentiation of chondrocytes on electrospun chitosan matrices. Cells Tissues Organs 195(3): 207-221.

Oda, T., Sakai, T., Hiraiwa, H., Hamada, T., Ono, Y., Nakashima, M., Ishizuka, S., Matsukawa, T., Yamashita, S., Tsuchiya, S. & Ishiguro, N. 2016. Osteoarthritis-derived chondrocytes are a potential source of multipotent progenitor cells for cartilage tissue engineering. Biochem. Biophys. Res. Commun. 479(3): 469-475.

Pak, J., Lee, J.H., Park, K.S., Jeong, B.C. & Lee, S.H. 2016. Regeneration of cartilage in human knee osteoarthritis with autologous adipose tissue-derived stem cells and autologous extracellular matrix. BioResearch Open Access 5(1): 192-200.

Sadeghi, A.R., Nokhasteh, S., Molavi, A.M., Khorsand-Ghayeni, M., Naderi-Meshkin, H. & Mahdizadeh, A. 2016. Surface modification of electrospun plga scaffold with collagen for bioengineered skin substitutes. Materials Science and Engineering C 66: 130-137.

Schrobback, K., Klein, T.J., Schuetz, M., Upton, Z., Leavesley, D.I. & Malda, J. 2011. Adult human articular chondrocytes in a microcarrier-based culture system: Expansion and redifferentiation. Journal of Orthopaedic Research 29(4): 539-546.

Shin, H.J., Lee, C.H., Cho, I.H., Kim, Y-J., Lee, Y-J., Kim, I.A., Park, K-D., Yui, N. & Shin, J-W. 2006. Electrospun PLGA nanofiber scaffolds for articular cartilage reconstruction: Mechanical stability, degradation and cellular responses under mechanical stimulation in vitro. Journal of Biomaterials Science: Polymer Edition 17(1): 103-119.

Thapa, A., Miller, D.C., Webster, T.J. & Haberstroh, K.M. 2003. Nano-structured polymers enhance bladder smooth muscle cell function. Biomaterials 24(17): 2915-2926.

Ude, C.C., Shamsul, B.S., Ng, M.H., Chen, H.C., Ohnmar, H., Amaramalar, S.N., Rizal, A.R., Johan, A., Norhamdan, M.Y., Azizi, M., Aminuddin, B.S. & Ruszymah, B.H.I. 2018. Long-term evaluation of osteoarthritis sheep knee, treated with tgf-β3 and bmp-6 induced multipotent stem cells. Exp. Gerontol. 104: 43-51.

Ude, C.C., Shamsul, B.S., Ng, M.H., Chen, H.C., Johan, A., Norhamdan, M.Y., Aminuddin, B.S. & Ruszymah, B.H.I. 2014. Cartilage regeneration by chondrogenic induced adult stem cells in osteoarthritic sheep model. PloS One 9(6): e98770.

Wang, Y., Wu., S.H., Kuss, M.A., Streubel, P.N. & Duan, B. 2017. Effects of hydroxyapatite and hypoxia on chondrogenesis and hypertrophy in 3d bioprinted ADMSC laden constructs. ACS Biomaterials Science & Engineering 3(5): 826-835.

Yoshimoto, H., Shin, Y.M., Terai, H. & Vacanti, J.P. 2003. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24(12): 2077-2082.

Zhang, Q., Ji, Q., Wang, X., Kang, L., Fu, Y., Yin, Y., Li, Z., Liu, Y., Xu, X. & Wang, Y. 2015. SOX9 is a regulator of ADAMTSs-induced cartilage degeneration at the early stage of human osteoarthritis. Osteoarthritis and Cartilage 23(12): 2259-2268.

 

 

*Corresponding author; email: shiplu@ppukm.ukm.edu.my

 

 

 

 

 

 

previous