Sains Malaysiana 47(10)(2018): 2463–2471

http://dx.doi.org/10.17576/jsm-2018-4710-23

 

Epithelial to Mesenchymal Transition and Reepithelialisation in Wound Healing: A Review of Comparison

(Peralihan Epitelium kepada Mesenkima dan Pengepitelium Semula dalam Penyembuhan Luka: Ulasan Perbandingan)

 

ABID NORDIN1, SHIPLU ROY CHOWDHURY2, AMINUDDIN BIN SAIM3 & RUSZYMAH BT HJ IDRUS1*

 

1Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia

 

2Tissue Engineering Centre,Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia

 

3Ear, Nose & Throat Consultant Clinic, Ampang Puteri Specialist Hospital, 68000 Ampang, Selangor Darul Ehsan, Malaysia

 

Received: 30 March 2018/Accepted: 20 June 2018

 

 

ABSTRACT

Skin wound healing is a complex physiological event, involving many cellular and molecular components. The event of wound healing is the coordinated overlap of a number of distinct phases, namely haemostasis, inflammatory, proliferative and remodelling. The molecular events surrounding wound healing, particularly the reepithelialisation, has been reported to be similar to the epithelial to mesenchymal transition (EMT). In this review, the mechanism between epithelialisation and EMT were compared. Both are characterised by the loss of epithelial integrity and increased motility. In terms of the signalling kinases, Smad and mitogen-activated protein kinase (MAPK) has been reported to be involved in both reepithelialisation and EMT. At the transcriptional level, SLUG transcription factor has been reported to be important for both reepithelialisation and EMT. Extracellular matrix proteins that have been associated with both events are collagen and laminin. Lastly, both events required the interplay between matrix metalloproteinases (MMPs) and its inhibitor. As a conclusion, both reepithelialisation and EMT shares similar signaling cascade and transcriptional regulation to exhibit decreased epithelial traits and increased motility in keratinocytes.

 

Keywords: Epithelial to mesenchymal transition; reepithelialisation; wound healing

 

ABSTRAK

Penyembuhan luka ialah proses fisiologi yang kompleks dan melibatkan pelbagai komponen sel dan molekul. Proses penyembuhan luka terdiri daripada tindihan beberapa fasa yang tersusun iaitu haemostasis, inflamasi, proliferasi dan pembentukan semula tisu. Proses molekul penyembuhan luka, khasnya pengepitelium semula, telah dilaporkan mempunyai persamaan dengan proses molekul yang terlibat dalam peralihan epitelium kepada mesenkima (EMT). Dalam kajian ini, persamaan proses molekul antara pengepitelium semula dan EMT dibincangkan. Penunjuk utama untuk kedua-dua proses ialah kehilangan keutuhan sel epitelium yang membawa kepada migrasi sel. Dua protein kinase telah dilaporkan sama-sama terlibat dalam pengepitelium semula dan EMT, Smad dan MAPK (mitogen-activated protein kinase). Pada tahap transkripsi genetik, faktor transkripsi SLUG dilaporkan diperlukan dalam kedua-dua proses. Matriks ekstrasel laminin dan kolagen juga dikaitkan dengan kedua-dua proses. Akhir sekali, keseimbangan antara enzim pencerna matriks ekstrasel dan perencatnya juga penting dalam proses pengepitelium semula dan EMT. Kesimpulannya, proses epitelium semula dan EMT berkongsi proses kawal atur yang sama di peringkat kinase dan faktor transkripsi yang membolehkan mobiliti sel dan pengurangan sifat epitelium untuk keratinosit.

 

Kata kunci: Pengepitelium semula; penyembuhan luka; peralihan epitelium kepada mesenkima

REFERENCES

Abreu-Blanco, M.T., Watts, J.J., Verboon, J.M. & Parkhurst, S.M. 2012. Cytoskeleton responses in wound repair. Cellular and Molecular Life Sciences 69(15): 2469-2483.

Barrientos, S., Brem, H., Stojadinovic, O. & Tomic-Canic, M. 2014. Clinical application of growth factors and cytokines in wound healing. Wound Repair and Regeneration 22(5): 569-578.

Beer, H.D., Gassmann, M.G., Munz, B., Steiling, H., Engelhardt, F., Bleuel, K. & Werner, S. 2000. Expression and function of keratinocyte growth factor and activin in skin morphogenesis and cutaneous wound repair. Journal of Investigative Dermatology Symposium Proceedings 5(1): 34-39.

Bhora, F.Y., Dunkin, B.J., Batzri, S., Aly, H.M., Bass, B.L., Sidawy, A.N. & Harmon, J.W. 1995. Effect of growth factors on cell proliferation and epithelialization in human skin. Journal of Surgical Research 59(2): 236-244.

Bielefeld, K.A., Amini-Nik, S. & Alman, B.A. 2013. Cutaneous wound healing: Recruiting developmental pathways for regeneration. Cellular and Molecular Life Sciences 70(12): 2059-2081.

Burr, S. & Penzer, R. 2005. Promoting skin health. Nursing Standard 19(36): 57-65.

Byun, J.S. & Gardner, K. 2013. Wounds that will not heal: Pervasive cellular reprogramming in cancer. American Journal of Pathology 182(4): 1055-1064.

Caley, M.P., Martins, V.L.C. & O’Toole, E.A. 2015. Metalloproteinases and wound healing. Advances in Wound Care 4(4): 225-234.

Chen, K.S., Shi, M.D., Chien, C.S. & Shih, Y.W. 2014. Pinocembrin suppresses TGF-beta1-induced epithelial-mesenchymal transition and metastasis of human Y-79 retinoblastoma cells through inactivating alphavbeta3 integrin/FAK/p38alpha signaling pathway. Cell Bioscience 4: 41.

Chen, M.J., Shih, S.C., Wang, H.Y., Lin, C.C., Liu, C.Y., Wang, T.E., Chu, C.H. & Chen, Y.J. 2013a. Caffeic acid phenethyl ester inhibits epithelial-mesenchymal transition of human pancreatic cancer cells. Evidence-Based Complementary and Alternative Medicine 2013: 270906.

Chen, Q.K., Lee, K., Radisky, D.C. & Nelson, C.M. 2013b. Extracellular matrix proteins regulate epithelial-mesenchymal transition in mammary epithelial cells. Differentiation 86(3): 126-132.

Cheng, F., Shen, Y., Mohanasundaram, P., Lindström, M., Ivaska, J., Ny, T. & Eriksson, J.E. 2016. Vimentin coordinates fibroblast proliferation and keratinocyte differentiation in wound healing via TGF-β–Slug signaling. Proceedings of the National Academy of Sciences 113(30): E4320-E4327.

Clark, R.A.F., Folkvord, J.M. & Wertz, R.L. 1985. Fibronectin, as well as other extracelllular matrix proteins, mediate human keratinocyte adherence. Journal of Investigative Dermatology 84(5): 378-383.

Crowe, M.J., Doetschman, T. & Greenhalgh, D.G. 2000. Delayed wound healing in immunodeficient TGF-β1 knockout mice. Journal of Investigative Dermatology 115(1): 3-11.

Derynck, R. & Zhang, Y.E. 2003. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 425(6958): 577-584.

Dvorak, H.F. 1986. Tumors: Wounds that do not heal. The New England Journal of Medicine 315(26): 1650-1659.

Eming, S.A., Krieg, T. & Davidson, J.M. 2007. Inflammation in wound repair: Molecular and cellular mechanisms. Journal of Investigative Dermatology 127(3): 514-525.

Frankowski, H., Gu, Y.H., Heo, J.H., Milner, R. & Del Zoppo, G.J. 2012. Use of gel zymography to examine matrix metalloproteinase (gelatinase) expression in brain tissue or in primary glial cultures. Methods in Molecular Biology 814: 221-233.

Fuchs, E. & Cleveland, D.W. 1998. A structural scaffolding of intermediate filaments in health and disease. Science 279: 514-519.

Gheldof, A. & Berx, G. 2013. Cadherins and epithelial-to-mesenchymal transition. Progress in Molecular Biology and Translational Science 116: 317-336.

Gialeli, C., Theocharis, A.D. & Karamanos, N.K. 2011. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. Federation of European Biochemical Societies Journal 278(1): 16-27.

Gniadecki, R. 1998. Regulation of keratinocyte proliferation. General Pharmacology: The Vascular System 30(5): 619-622.

Haensel, D. & Dai, X. 2018. Epithelial-to-mesenchymal transition in cutaneous wound healing: Where we are and where we are heading. Developmental Dynamics 247(3): 473-480.

Hay, E.D. 1995. An overview of epithelio-mesenchymal transformation. Cells Tissues Organs 154(1): 8-20.

Hudson, L.G., Newkirk, K.M., Chandler, H.L., Choi, C., Fossey, S.L., Parent, A.E. & Kusewitt, D.F. 2009. Cutaneous wound reepithelialization is compromised in mice lacking functional Slug (Snai2). Journal of Dermatological Science 56(1): 19-26.

Idrus, R.H.B., Rameli, M.A.B., Low, K.C., Law, J.X., Chua, K.H., Latiff, M.B.A. & Saim, A.B. 2014. Full-thickness skin wound healing using autologous keratinocytes and dermal fibroblasts with fibrin. Advances in Skin & Wound Care 27(4): 171-180.

Ivaska, J. 2011. Vimentin. Central hub in EMT induction? Small GTPases 2(1): 51-53.

Janda, E., Lehmann, K., Killisch, I., Jechlinger, M., Herzig, M., Downward, J., Beug, H. & Grünert, S. 2002. Ras and TGFβ cooperatively regulate epithelial cell plasticity and metastasis: Dissection of Ras signaling pathways. Journal of Cell Biology 156(2): 299-313.

Jones, J.C.R., Dehart, G.W., Gonzales, M. & Goldfinger, L.E. 2000. Laminins: An overview. Microscopy Research and Technique 51(3): 211-213.

Jost, M., Huggett, T.M., Kari, C. & Rodeck, U. 2001. Matrix-independent survival of human keratinocytes through an EGF receptor/MAPK-kinase-dependent pathway. Molecular Biology of the Cell 12(5): 1519-1527.

Kalluri, R. & Neilson, E.G. 2003. Epithelial-mesenchymal transition and its implications for fibrosis. Journal of Clinical Investigation 112(12): 1776-1784.

Kalluri, R. & Weinberg, R. 2009. Review series the basics of epithelial-mesenchymal transition. Journal of Clinical Investigation 119(6): 1420-1428.

Kao, H.F., Chang-Chien, P.W., Chang, W.T., Yeh, T.M. & Wang, J.Y. 2013. Propolis inhibits TGF-β1-induced epithelial-mesenchymal transition in human alveolar epithelial cells via PPARγ activation. International Immunopharmacology 15(3): 565-574.

Koh, T.J. & DiPietro, L.A. 2011. Inflammation and wound healing: The role of the macrophage. Expert Reviews in Molecular Medicine 13: e23.

Kusewitt, D.F., Choi, C., Newkirk, K.M., Leroy, P., Li, Y., Chavez, M.G. & Hudson, L.G. 2009. Slug/Snai2 is a downstream mediator of epidermal growth factor receptor-stimulated reepithelialization. Journal of Investigative Dermatology 129(2): 491-495.

Lamouille, S., Xu, J. & Derynck, R. 2014. Molecular mechanisms of epithelial-mesenchymal transition. National Review Molecular Cell Biology 15(3): 178–196.

Landén, N.X., Li, D. & Ståhle, M. 2016. Transition from inflammation to proliferation: A critical step during wound healing. Cellular and Molecular Life Sciences 73(20): 3861-3885.

Laurens, N., Koolwijk, P. & De Maat, M.P.M. 2006. Fibrin structure and wound healing. Journal of Thrombosis and Haemostasis 4(5): 932-939.

Law, J.X., Chowdhury, S.R., Aminuddin, B.S. & Ruszymah, B.H.I. 2017. Role of plasma-derived fibrin on keratinocyte and fibroblast wound healing. Cell and Tissue Banking 18(4): 585-595.

Lee, D.Y. & Cho, K.H. 2005. The effects of epidermal keratinocytes and dermal fibroblasts on the formation of cutaneous basement membrane in three-dimensional culture systems. Archives of Dermatological Research 296(7): 296-302.

Leopold, P.L., Vincent, J. & Wang, H. 2012. A comparison of epithelial-to-mesenchymal transition and re-epithelialization. Seminars in Cancer Biology 22(5-6): 471-483.

Li, L., Hartley, R., Reiss, B., Sun, Y., Pu, J., Wu, D., Lin, F., Hoang, T., Yamada, S., Jiang, J. & Zhao, M. 2012. E-cadherin plays an essential role in collective directional migration of large epithelial sheets. Cellular and Molecular Life Sciences 69(16): 2779-2789.

Lu, P., Takai, K., Weaver, V.M. & Werb, Z. 2011. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harbor Perspectives in Biology 3(12): 1-24.

Maarof, M., Law, J.X., Chowdhury, S.R., Khairoji, K.A., Saim, A.B. & Idrus, R.B.H. 2016. Secretion of wound healing mediators by single and bi-layer skin substitutes. Cytotechnology 68(5): 1873-1884.

Mazlyzam, A.L., Aminuddin, B.S., Fuzina, N.H., Norhayati, M.M., Fauziah, O., Isa, M.R., Saim, L. & Ruszymah, B.H.I. 2007. Reconstruction of living bilayer human skin equivalent utilizing human fibrin as a scaffold. Burns: Journal of the International Society for Burn Injuries 33(3): 355-363.

Minutti, C.M., Knipper, J.A., Allen, J.E. & Zaiss, D.M.W. 2017. Tissue-specific contribution of macrophages to wound healing. Seminars in Cell & Developmental Biology 61: 3-11.

Moll, I., Houdek, P., Schäfer, S., Nuber, U. & Moll, R. 1999. Diversity of desmosomal proteins in regenerating epidermis: Immunohistochemical study using a human skin organ culture model. Archives of Dermatological Research 291(7- 8): 437-446.

Monsuur, H.N., Boink, M.A., Weijers, E.M., Roffel, S., Breetveld, M., Gefen, A., van den Broek, L.J. & Gibbs, S. 2016. Methods to study differences in cell mobility during skin wound healing in vitro. Journal of Biomechanics 49(8): 1381-1387.

Moreno-Bueno, G., Peinado, H., Molina, P., Olmeda, D., Cubillo, E., Santos, V., Palacios, J., Portillo, F. & Cano, A. 2009. The morphological and molecular features of the epithelial-to-mesenchymal transition. Nature Protocols 4(11): 1591-1613.

Muller, M., Trocme, C., Lardy, B., Morel, F., Halimi, S. & Benhamou, P.Y. 2008. Matrix metalloproteinases and diabetic foot ulcers: The ratio of MMP-1 to TIMP-1 is a predictor of wound healing. Diabetic Medicine 25(4): 419-426.

Nordin, A., Sainik, N.Q.A.V., Zulfarina, M.S., Naina-Mohamed, I., Saim, A. & Bt Hj Idrus, R. 2017. Honey and epithelial to mesenchymal transition in wound healing: An evidence-based review. Wound Medicine 18: 8-20.

O’Kane, D., Jackson, M.V., Kissenpfennig, A., Spence, S., Damkat-Thomas, L., Tolland, J.P., Smyth, A.E., Denton, C.P., Elborn, J.S., McAuley, D.F. & O’Kane, C.M. 2014. SMAD inhibition attenuates epithelial to mesenchymal transition by primary keratinocytes in vitro. Experimental Dermatology 23(7): 497-503.

O’Toole, E.A. 2001. Extracellular matrix and keratinocyte migration. Clinical and Experimental Dermatology 26(6): 525-530.

Odland, G. & Ross, R. 1968. Human wound repair I . Epidermal regeneration. The Journal of Cell Biology 39(1): 135-151.

Okada, H., Danoff, T.M., Kalluri, R., Neilson, E.G., Danoff, T.M. & Neilson, E.G. 1997. Early role of Fsp1 in epithelial-mesenchymal transformation. The American Physiological Society 273(4): F563-F574.

Pastar, I., Stojadinovic, O., Yin, N.C., Ramirez, H., Nusbaum, A.G., Sawaya, A., Patel, S.B., Khalid, L., Isseroff, R.R. & Tomic-Canic, M. 2014. Epithelialization in wound healing: A comprehensive review. Advances in Wound Care 3(7): 445-464.

Puolakkainen, P.A., Reed, M.J., Gombotz, W.R., Twardzik, D.R., Abrass, I.B. & Helene Sage, E. 1995. Acceleration of wound healing in aged rats by topical application of transforming growth factor-beta1. Wound Repair and Regeneration 3(3): 330-339.

Ricard-Blum, S. 2011. The collagen family. Cold Spring Harbor Perspectives in Biology 3(1): a004978.

Savagner, P., Kusewitt, D.F., Carver, E.A., Magnino, F., Choi, C., Gridley, T. & Hudson, L.G. 2005. Developmental transcription factor slug is required for effective re-epithelialization by adult keratinocytes. Journal of Cellular Physiology 202(3): 858-866.

Singer, A.J. & Clark, R.A.F. 1999. Cutaneous wound healing. The New England Journal of Medicine 341(10): 738-746.

Soo, C., Shaw, W.W., Zhang, X., Longaker, M.T., Howard, E.W. & Ting, K. 2000. Differential expression of matrix metalloproteinases and their tissue-derived inhibitors in cutaneous wound repair. Plastic and Reconstructive Surgery 105(2): 638-647.

Szpaderska, A.M., Egozi, E.I., Gamelli, R.L. & DiPietro, L.A. 2003. The effect of thrombocytopenia on dermal wound healing. The Journal of Investigative Dermatology 120(6): 1130-1137.

Tonnesen, M.G., Feng, X. & Clark, R.A. 2000. Angiogenesis in wound healing. The Journal of Investigative Dermatology. Symposium Proceedings 5(1): 40-46.

Tracy, L.E., Minasian, R.A. & Caterson, E.J. 2016. Extracellular matrix and dermal fibroblast function in the healing wound. Advances in Wound Care 5(3): 119-136.

Tseng, J., Lin, C., Su, L., Fu, H., Yang, S. & Chuu, C. 2016. CAPE suppresses migration and invasion of prostate cancer cells via activation of non-canonical Wnt signaling. Oncotarget 7(25): 38010-38024.

Velnar, T., Bailey, T. & Smrkolj, V. 2009. The wound healing process: An overview of the cellular and molecular mechanisms. Journal of International Medical Research 37(5): 1528-1542.

Vićovac, L. & Aplin, J.D. 1996. Epithelial-mesenchymal transition during trophoblast differentiation. Acta Anatomica 156(3): 202-216.

Werner, S. & Grose, R. 2003. Regulation of wound healing by growth factors and cytokines. Physiological Reviews 83(3): 835-870.

Xu, J., Lamouille, S. & Derynck, R. 2009. TGF-beta-induced epithelial to mesenchymal transition. Cell Research 19(2): 156-172.

Xue, M. & Jackson, C.J. 2015. Extracellular matrix reorganization during wound healing and its impact on abnormal scarring. Advances in Wound Care 4(3): 119-136.

Yalcinkaya, E., Celik, M. & Bugan, B. 2014. Extracellular matrix turnover: A balance between MMPs and their inhibitors. Arquivos Brasileiros de Cardiologia 102(5): 519-520.

Yau, J.W., Teoh, H. & Verma, S. 2015. Endothelial cell control of thrombosis. BMC Cardiovascular Disorders 15: 130.

Zeisberg, M., Maeshima, Y., Mosterman, B. & Kalluri, R. 2002. Renal fibrosis. The American Journal of Pathology 160(6): 2001-2008.

Zeisberg, M. & Neilson, E.G. 2009. Review series personal perspective biomarkers for epithelial-mesenchymal transitions. The Journal of Clinical Investigation 119(6): 1429-1437.

 

*Corresponding author; email: ruszyidrus@gmail.com

 

 

 

 

 

 

 

 

 

 

previous