Sains Malaysiana 47(10)(2018): 2501–2507

http://dx.doi.org/10.17576/jsm-2018-4710-27

 

Chronic Consumption of Fructose Dysregulates Genes Related to Glucose and Lipid Metabolism in Prostate Tissue

(Pengambilan Kronik Fruktosa Mengganggu Kawalatur Gen-gen Berkaitan dengan Metabolisme Glukosa dan Lipid dalam Tisu Prostat)

 

NORHAZLINA ABDUL WAHAB1*, MARJANU HIKMAH ELIAS1, RAJA AFFENDI RAJA ALI2 & NORFILZA MOHD MOKHTAR1

 

1Department of Physiology, Faculty of Medicine, Pusat Perubatan Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia

 

2Department of Medicine, Faculty of Medicine, Pusat Perubatan Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia

 

Received: 30 March 2018/Accepted: 20 June 2018

 

ABSTRACT

Fructose is commonly used as a taste enhancer in many processed foods. Excessive fructose consumption is highly associated with obesity and development of cancer particularly prostate cancer. This study aimed to investigate the biochemical and molecular changes in the prostate tissue of rats treated with 20% fructose for six months. A total of 18 rats weighted 200-250 g were divided into two groups, where each group consisted of 9 rats. Control group is given normal diet, while the treated group was given normal diet and 20% fructose in drinking water. After six months of treatment, both groups were sacrificed for further analysis. Body weight, blood pressure and glucose were measured. Lipid profiles were determined using quantitative colorimetric assay. Transcripts level of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), leptin (LEP), angiopoietin 1 (ANGPT1), microRNA (miR)-34a, miR-10b and miR-192 were determined using quantitative PCR, while the protein levels of 11β-HSD1 and leptin were determined using ELISA. The results showed that 20% fructose diet significantly increased blood glucose level as compared to the control (p<0.05). The transcript levels of LEP and miR-192 were significantly lower in the fructose-treated group as compared to the control (p<0.05). There was a significant linear relationship between prostate LEP and serum LDL/VLDL level as well as between the level of prostate LEP and serum total cholesterol level (p<0.05). Thus, our results showed that chronic consumption of fructose could down-regulate LEP and miR-192 expression in prostate tissue, and promote higher accumulation of fat in the tissue. Additionally, downregulation of miR-192 has been reported to be associated with the pathogenesis of prostate cancer. Thus, it can be concluded that long-term fructose diet leads to higher blood glucose level and down-regulation of LEP and miR-192 expression in prostate tissue.

 

Keywords: Chronic consumption; fructose; leptin; miR-192; prostate; obesity

 

ABSTRAK

Fruktosa lazimnya digunakan sebagai penambah perisa dalam kebanyakan makanan yang diproses. Pengambilan fruktosa secara berlebihan sangat berkait rapat dengan keobesan dan pembentukan kanser terutamanya kanser prostat. Kajian ini bertujuan untuk mengkaji perubahan biokimia dan molekul dalam tisu prostat tikus yang dirawat dengan fruktosa 20% selama enam bulan. Sejumlah 18 ekor tikus dengan berat 200-250 g dibahagikan kepada dua kumpulan dengan setiap kumpulan mengandungi 9 ekor tikus. Kumpulan kawalan diberi diet normal, sementara kumpulan rawatan diberi diet normal dan 20% fruktosa dalam minuman. Selepas enam bulan rawatan, kedua-dua kumpulan dikorbankan untuk analisis selanjutnya. Berat tubuh, tekanan darah dan aras glukosa diukur. Profil lipid ditentukan menggunakan asai kolorimetrik kuantitatif. Aras transkripsi 11β-hidroksisteroid dehidrogenase jenis 1 (11β-HSD1), leptin (LEP), angiopoietin 1 (ANGPT1), mikroRNA (miR)-34a, miR-10b dan miR-192 ditentukan menggunakan kuantitatif PCR, sementara aras protein 11β-HSD1 dan leptin ditentukan menggunakan ELISA. Keputusan menunjukkan bahawa diet fruktosa 20% secara signifikan meningkatkan aras glukosa darah berbanding kawalan (p<0.05). Aras transkripsi LEP dan miR-192 adalah lebih rendah secara signifikan bagi kumpulan yang dirawat dengan fruktosa berbanding kawalan (p<0.05). Terdapat hubungan linear yang signifikan antara aras LEP tisu prostat dengan aras LDL/VLDL serum (p<0.05) dan antara aras LEP tisu prostat dengan aras kolesterol total dalam serum (p<0.05). Dengan itu, kajian ini menunjukkan bahawa pengambilan fruktosa untuk tempoh yang lama mengurangkan ekspresi LEP dan miR-192 pada tisu prostat serta menggalakkan pengumpulan lemak pada tisu. Malah, ekspresi miR-192 yang rendah dilaporkan mempunyai kaitan dengan patogenesis kanser prostat. Maka, dapat disimpulkan bahawa diet fruktosa jangka panjang boleh mengakibatkan peningkatan aras gula dalam darah dan mengurangkan ekspresi LEP dan miR-192 pada tisu prostat.

 

Kata kunci: Fruktosa; leptin; miR-192; keobesan; pengambilan kronik; prostat

REFERENCES

Aida Azlina, A., Farihah, H.S., Qodriyah, H.M.S. & Nur Azlina, M.F. 2009. Effects of Piper sarmentosum water extract on 11β-hydroxysteroid dehydrogenase type 1 bioactivity in ovariectomy-induced obese rats. International Journal of Pharmacology 5(6): 362-369. doi: 10.3923/ijp.2009.362.369.

Arner, P. & Kulyte, A. 2015. MicroRNA regulatory networks in human adipose tissue and obesity. Nat. Rev. Endocrinol. 11(5): 276-288. doi:10.1038/nrendo.2015.25.

Azmir, A., Norfilza, M.M., Norizam, S., Nor Anita, M.M.N. & Zaiton, Z. 2014. Identification of circulating microRNAs in young men with central obesity. Asian Pacific Journal of Tropical Disease 4(3): 236.

Basciano, H., Federico, L. & Adeli, K. 2005. Fructose, insulin resistance, and metabolic dyslipidemia. Nutr. Metab. 2(1): 5. doi:10.1186/1743-7075-2-5.

Bocarsly, M.E., Powell, E.S., Avena, N.M. & Hoebel, B.G. 2010. High-fructose corn syrup causes characteristics of obesity in rats: Increased body weight, body fat and triglyceride levels. Pharmacol. Biochem. Behav. 97(1): 101-106. doi:10.1016/j. pbb.2010.02.012.

Bursac, B.N., Vasiljevic, A.D., Nestorovic, N.M., Velickovic, N.A., Vojnovic Milutinovic, D.D., Matic, G.M. & Djordjevic, A.D. 2014. High-fructose diet leads to visceral adiposity and hypothalamic leptin resistance in male rats - do glucocorticoids play a role? J. Nutr. Biochem. 25(4): 446-455. doi:10.1016/j.jnutbio.2013.12.005.

Chartoumpekis, D.V., Zaravinos, A., Ziros, P.G., Iskrenova, R.P., Psyrogiannis, A.I., Kyriazopoulou, V.E. & Habeou, I.G. 2012. Differential expression of microRNAs in adipose tissue after long-term high-fat diet-induced obesity in mice. PLoS One 7(4): e34872. doi:10.1371/journal.pone.0034872.

Dehwah, M.A., Xu, A. & Huang, Q. 2012. MicroRNAs and type 2 diabetes/obesity. J. Genet. Genomics 39(1): 11-18. doi:10.1016/j.jgg.2011.11.007.

Frankenberry, K.A., Somasundar, P., McFadden, D.W. & Vona-Davis, L.C. 2004. Leptin induces cell migration and the expression of growth factors in human prostate cancer cells. Am. J. Surg. 188(5): 560-565. doi:10.1016/j. amjsurg.2004.07.031.

Ibrahim, F.F., Jamal, R., Syafruddin, S.E., Ab Mutalib, N.S., Saidin, S., Md Zin, R.R., Hossain Mollah, M.M. & Mokhtar, N.M. 2015. MicroRNA-200c and microRNA-31 regulate proliferation, colony formation, migration and invasion in serous ovarian cancer. J. Ovarian Res. 8: 56. doi:10.1186/ s13048-015-0186-7.

Johnson, R.J., Segal, M.S., Sautin, Y., Nakagawa, T., Feig, D.I., Kang, D.H., Gersch, M.S., Benner, S. & Sanchez-Lozada, L.G. 2007. Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. Am. J. Clin. Nutr. 86(4): 899-906.

Khella, H.W., Bakhet, M., Allo, G., Jewett, M.A., Girgis, A.H., Latif, A., Girgis, H., Von Both, I., Bjarnason, G.A. & Yousef, G.M. 2013. miR-192, miR-194 and miR-215: A convergent microRNA network suppressing tumor progression in renal cell carcinoma. Carcinogenesis 34(10): 2231-2239. doi:10.1093/carcin/bgt184.

Kolderup, A. & Svihus, B. 2015. Fructose metabolism and relation to atherosclerosis, type 2 diabetes, and obesity. J. Nutr. Metabvol. 2015: 823081. doi:10.1155/2015/823081.

Lakhan, S.E. & Kirchgessner, A. 2013. The emerging role of dietary fructose in obesity and cognitive decline. Nutr. J. 12: 114. doi:10.1186/1475-2891-12-114.

Lee, S.E., Kim, J.M., Jeong, M.K., Zouboulis, C.C. & Lee, S.H. 2013. 11beta-hydroxysteroid dehydrogenase type 1 is expressed in human sebaceous glands and regulates glucocorticoid-induced lipid synthesis and toll-like receptor 2 expression in SZ95 sebocytes. Br. J. Dermatol. 168(1): 47-55. doi:10.1111/bjd.12009.

Li, M.D. 2011. Leptin and beyond: An odyssey to the central control of body weight. Yale J. Biol. Med. 84(1): 1-7.

Mamikutty, N., Thent, Z.C., Sapri, S.R., Sahruddin, N.N., Mohd Yusof, M.R. & Farihah, H.S. 2014. The establishment of metabolic syndrome model by induction of fructose drinking water in male Wistar rats. Biomed. Res. Int. 2014: 263897. doi: 10.1155/2014/263897.

Noda, T., Kikugawa, T., Tanji, N., Miura, N., Asai, S., Higashiyama, S. & Yokohama, M. 2015. Long term exposure to leptin enhances the growth of prostate cancer cells. Int. J. Oncol. 46(4): 1535-1542. doi:10.3892/ijo.2015.2845.


Paulsen, S.K., Pedersen, S.B., Fisker, S. & Richelsen, B. 2007. 11Beta-HSD type 1 expression in human adipose tissue: Impact of gender, obesity, and fat localization. Obesity (Silver Spring) 15(8): 1954-1960. doi:10.1038/oby.2007.233.

Ribeiro, R., Monteiro, C., Catalan, V., Hu, P., Cunha, V., Rodriguez, A., Gomez-Ambrosi, J., Fraga, A., Principe, P., Lobato, C., Lobo, F., Morais, A., Silva, V., Sanchez- Magalhaes, J., Oliveira, J., Pina, F., Lopes, C., Medeiros, R. & Fruhbeck, G. 2012. Obesity and prostate cancer: Gene expression signature of human periprostatic adipose tissue. BMC Med. 10: 108. doi:10.1186/1741-7015-10-108.

Rumussen, J.J. 1992. Fructose and related food carbohydrates. Sources, intake, absorption, and clinical implications. Scand. J. Gastroenterol. 27(10): 819-828.

Saeed, S., Bonnefond, A., Manzoor, J., Shabir, F., Ayesha, H., Philippe, J., Durand, E., Crouch, H., Sand, O., Ali, M., Butt, T., Rathore, A.W., Falchi, M., Arslan, M. & Froguel, P. 2015. Genetic variants in LEP, LEPR, and MC4R explain 30% of severe obesity in children from a consanguineous population. Obesity (Silver Spring) 23(8): 1687-1695. doi:10.1002/ oby.21142.

Satoh, N., Yamada, Y., Kinugasa, Y. & Takakura, N. 2008. Angiopoietin-1 altered tumor growth by stabilizing blood vessels or by promoting angiogenesis. Cancer Sci. 99(12): 2373-2379. doi:10.1111/j.1349-7006.2008.00961.x.

Saykally, J.N., Dogan, S., Cleary, M.P. & Sanders, M.M. 2009. The ZEB1 transcription factor is a novel repressor of adiposity in female mice. PLoS One 4(12): e8460. doi:10.1371/journal. pone.0008460.

Senanayake, U., Das, S., Vesely, P., Alzoughbi, W., Frohlich, L.F., Chowdhury, P., Leuschner, I., Hoefler, G. & Guertl, B. 2012. miR-192, miR-194, miR-215, miR-200c and miR-141 are downregulated and their common target ACVR2B is strongly expressed in renal childhood neoplasms. Carcinogenesis 33(5): 1041-1021. doi:10.1093/carcin/bgs126.

Shabana & Shahida Hasnain. 2016. The p.N103K mutation of leptin (LEP) gene and severe early onset obesity in Pakistan. Biol. Res. 49: 23. doi:10.1186/s40659-016-0082-7.

Sjostrand, M., Jansson, P.A., Palming, J., de Schoolmeester, J., Gill, D., Rees, A., Sjogren, L., Persson, T. & Eriksson, J.W. 2010. Repeated measurements of 11beta-HSD-1 activity in subcutaneous adipose tissue from lean, abdominally obese, and type 2 diabetes subjects - no change following a mixed meal. Horm. Metab. Res. 42(11): 798-802. doi:10.1055/s-0030-1254134

Spencer, S.J. & Tilbrook, A. 2011. The glucocorticoid contribution to obesity. Stress 14(3): 233-246. doi:10.3109/ 10253890.2010.534831.

Sun, J., Fan, Z., Lu, S., Yang, J., Hao, T. & Huo, Q. 2016. MiR- 192 suppresses the tumorigenicity of prostate cancer cells by targeting and inhibiting nin one binding protein. Int. J. Mol. Med. 37(2): 485-492. doi:10.3892/ijmm.2016.2449.

Viesti, A.C.R., Salgado Jr., W., Pretti da Cunha, Tirapelli, D. & dos Santos, J.S. 2014. The expression of LEP, LEPR, IGF1 and IL10 in obesity and the relationship with microRNAs. PLoS One 9(4): e93512. doi:10.1371/journal.pone.0093512.

Williams, M.D. & Mitchell, G.M. 2012. MicroRNAs in insulin resistance and obesity. Exp. Diabetes Res. doi:10.1155/2012/484696.

Wong, S.K., Chin, K.Y., Farihah, H.S., Fairus, A. & Ima-Nirwana, S. 2016. Animal models of metabolic syndrome: A review. Nutrition & Metabolism 13: 65. doi:10.1186/s12986-016- 0123-9

 

*Corresponding author; email: hazlina@ukm.edu.my

 

 

 

 

 

 

 

 

 

previous