Sains Malaysiana 47(12)(2018): 2993–3002

http://dx.doi.org/10.17576/jsm-2018-4712-08

 

Reconstruction of the Transcriptional Regulatory Network in Arabidopsis thaliana Aliphatic Glucosinolate Biosynthetic Pathway

(Pembinaan Semua Jaringan Pengawal Atur Transkripsi Tapak Jalan Biosintesis Glukosinolat Alifatik dalam Arabidopsis thaliana)

KHALIDAH-SYAHIRAH ASHARI1, MUHAMMAD-REDHA ABDULLAH-ZAWAWI2, SARAHANI HARUN2 & ZETI-AZURA MOHAMED-HUSSEIN1,2*

 

1Centre for Frontier Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Centre for Bioinformatics Research, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 30 May 2018 /Accepted: 19 September 2018

 

ABSTRACT

Aliphatic glucosinolate is an important secondary metabolite responsible in plant defense mechanism and carcinogenic activity. It plays a crucial role in plant adaptation towards changes in the environment such as salinity and drought. However, in many plant genomes, there are thousands of genes encoding proteins still with putative functions and incomplete annotations. Therefore, the genome of Arabidopsis thaliana was selected to be investigated further to identify any putative genes that are potentially involved in the aliphatic glucosinolate biosynthesis pathway, most of its gene are with incomplete annotation. Known genes for aliphatic glucosinolates were retrieved from KEGG and AraCyc databases. Three co-expression databases i.e., ATTED-II, GeneMANIA and STRING were used to perform the co-expression network analysis. The integrated co-expression network was then being clustered, annotated and visualized using Cytoscape plugin, MCODE and ClueGO. Then, the regulatory network of A. thaliana from AtRegNet was mapped onto the co-expression network to build the transcriptional regulatory network. This study showed that a total of 506 genes were co-expressed with the 61 aliphatic glucosinolate biosynthesis genes. Five transcription factors have been predicted to be involved in the biosynthetic pathway of aliphatic glucosinolate, namely SEPALLATA 3 (SEP3), PHYTOCHROME INTERACTING FACTOR 3-like 5 (AtbHLH15/PIL5), ELONGATED HYPOCOTYL 5 (HY5), AGAMOUS-like 15 (AGL15) and GLABRA 3 (GL3). Meanwhile, three other genes with high potential to be involved in the aliphatic glucosinolates biosynthetic pathway were identified, i.e., methylthioalkylmalate-like synthase 4 (MAML-4) and aspartate aminotransferase (ASP1 and ASP4). These findings can be used to complete the aliphatic glucosinolate biosynthetic pathway in A. thaliana and to update the information on the glucosinolate-related pathways in public metabolic databases.

 

Keywords: Aliphatic glucosinolate biosynthesis; co-expression analysis; regulatory network

 

ABSTRAK

Glukosinolat alifatik merupakan metabolit sekunder penting di dalam mekanisme pertahanan tumbuhan dan aktiviti karsinogen. Glukosinolat juga penting di dalam penyesuaian terhadap persekitaran seperti kemasinan dan kemarau. Namun begitu dalam kebanyakan genom tumbuhan, masih banyak fungsi gen yang mengekod protein adalah putatif dan tidak lengkap. Oleh itu, genom Arabidopsis thaliana telah dipilih untuk dikaji dengan lebih mendalam untuk mengenal pasti gen putatif yang berpotensi terlibat di dalam tapak jalan biosintesis glukosinolat alifatik. Gen biosintetik glukosinolat alifatik telah dikumpul daripada pangkalan data KEGG dan AraCyc manakala pangkalan data ATTED-II, GeneMANIA dan STRING digunakan dalam analisis pengekspresan bersama. Integrasi jaringan pengekspresan bersama telah dilakukan dengan menggunakan perisian Cytoscape, MCODE dan ClueGO. Kesemua gen pengekspresan bersama yang terlibat dipetakan menggunakan set data jaringan pengawal atur daripada pangkalan data AtRegNet. Hasil kajian ini berjaya mengenal pasti 506 gen yang telah diekspreskan bersama dengan 61 gen biosintetik glukosinolat alifatik. Lima faktor transkripsi telah berjaya dikenal pasti dan didapati terlibat di dalam mengawal atur biosintetis glukosinolat alifatik iaitu SEPALLATA 3 (SEP3), PHYTOCHROME INTERACTING FACTOR 3-like 5 (AtbHLH15/PIL5), ELONGATED HYPOCOTYL 5 (HY5), AGAMOUS-like 15 (AGL15) dan GLABRA 3 (GL3). Kajian ini mengukuhkan lagi penglibatan gen berpotensi di dalam tapak jalan biosintesis glukosinolat alifatik melalui penemuan gen methylthioalkylmalate-like synthase 4 (MAML-4) dan aspartate aminotransferase (ASP4 dan ASP1) menggunakan kaedah yang telah dijalankan.

 

Kata kunci: Analisis pengekspresan bersama; biosintesis glukosinolat alifatik; jaringan pengawal atur

REFERENCES

Atwell, L.L., Beaver, L.M., Shannon, J., Williams, D.E., Dashwood, R.H. & Ho, E. 2015. Epigenetic regulation by sulforaphane: Opportunities for breast and prostate cancer chemoprevention. Current Pharmacology Reports 1(2): 102-111.

Bader, G.D. & Hogue, C.W. 2003. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4(1): 2.

Beekwilder, J., Van Leeuwen, W., Van Dam, N.M., Bertossi, M., Grandi, V., Mizzi, L., Soloviev, M., Szabados, L., Molthoff, J.W., Schipper, B. & Verbocht, H. 2008. The impact of the absence of aliphatic glucosinolates on insect herbivory in Arabidopsis. PLoS ONE 3(4): 1-12.

Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P., Tosolini, M., Kirilovsky, A., Fridman, W., Pagès, F., Trajanoski, Z., Galon, J., Team, A., Immunology, I.C. & Descartes, U.P. 2009. ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25(8): 1091-1093.

Binder, S. 2010. Branched-chain amino acid metabolism in Arabidopsis thaliana. The Arabidopsis Book e0137: 1-14.

Bradbury, L.M.T., Niehaus, T.D. & Hanson, A.D. 2013. Comparative genomics approaches to understanding and manipulating plant metabolism. Current Opinion in Biotechnology 24: 278-284.

Cao, F.Y., Yoshioka, K. & Desveaux, D. 2011. The roles of ABA in plant-pathogen interactions. Journal of Plant Research 124(4): 489-499.

Cluis, C.P., Mouchel, C.F. & Hardtke, C.S. 2004. The Arabidopsis transcription factor HY5 integrates light and hormone signaling pathways. The Plant Journal 38(2): 332-347.

Farrow, S.C. & Facchini, P.J. 2014. Functional diversity of 2-oxoglutarate/Fe(II)-dependent dioxygenases in plant metabolism. Frontiers in Plant Science 5(October): 1-15.

Field, B., Furniss, C., Wilkinson, A. & Mithen, R. 2006. Expression of a Brassica isopropylmalate synthase gene in Arabidopsis perturbs both glucosinolate and amino acid metabolism. Plant Molecular Biology 60(5): 717-727.

Frerigmann, H., Bottcher, C., Baatout, D. & Gigolashvili, T. 2012. Glucosinolates are produced in trichomes of Arabidopsis thaliana. Frontiers in Plant Science 3: 242.

Grubb, C.D. & Abel, S. 2006. Glucosinolate metabolism and its control. Trends in Molecular Medicine 11(2): 89-100.

Halkier, B.A. & Gershenzon, J. 2006. Biology and biochemistry of glucosinolates. Annual Review of Plant Biology 57: 303- 333.

Hopkins, R.J., van Dam, N.M. & van Loon, J.J.A. 2009. Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annual Review of Entomology 54: 57-83.

Hundertmark, M. & Hincha, D.K. 2008. LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9: 118.

Ishida, M., Hara, M., Fukino, N., Kakizaki, T. & Morimitsu, Y. 2014. Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables. Breeding Science 64: 48-59.

Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. 2016. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Research 44: D457-D462.

Kaufmann, K., Muiño, J.M., Jauregui, R., Airoldi, C.A., Smaczniak, C., Krajewski, P. & Angenent, G.C. 2009. Target genes of the MADS transcription factor sepallata3: Integration of developmental and hormonal pathways in the Arabidopsis flower. PLoS Biology 7(4): 0854-0875.

Kim, D.H., Yamaguchi, S., Lim, S., Oh, E., Park, J., Hanada, A., Kamiya, Y. & Choi, G. 2008. SOMNUS, a CCCH-Type zinc finger protein in Arabidopsis, negatively regulates light-dependent seed germination downstream of PIL5. The Plant Cell 20(5): 1260-1277.

Lächler, K., Imhof, J., Reichelt, M., Gershenzon, J. & Binder, S. 2015. The cytosolic branched-chain aminotransferases of Arabidopsis thaliana influence methionine supply, salvage and glucosinolate metabolism. Plant Molecular Biology 88(1-2): 119-131.

Lee, J.G., Lim, S., Kim, J. & Lee, E.J. 2017. The mechanism of deterioration of the glucosinolate-myrosynase system in radish roots during cold storage after harvest. Food Chemistry 233: 60-68.

Li, Y., Pearl, S.A. & Jackson, S.A. 2015. Gene networks in plant biology: Approaches in reconstruction and analysis. Trends in Plant Science 20(10): 664-675.

Mao, L., Van Hemert, J.L., Dash, S. & Dickerson, J.A. 2009. Arabidopsis gene co-expression network and its functional modules. BMC Bioinformatics 10: 1-24.

Martínez-Ballesta, M., Moreno-Fernández, D.A., Castejón, D., Ochando, C., Morandini, P.A. & Carvajal, M. 2015. The impact of the absence of aliphatic glucosinolates on water transport under salt stress in Arabidopsis thaliana. Frontiers in Plant Science 6(July): 1-12.

Miesak, B.H. & Coruzzi, G.M. 2002. Molecular and physiological analysis of Arabidopsis mutants defective in cytosolic or chloroplastic aspartate aminotransferase. Plant Physiology 129(2): 650-660.

Moon, J., Zhu, L., Shen, H. & Huq, E. 2008. PIF1 directly and indirectly regulates chlorophyll biosynthesis to optimize the greening process in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 105(27): 9433-9438.

Mostafa, I., Yoo, M.J., Zhu, N., Geng, S., Dufresne, C., Abou- Hashem, M., El-Domiaty, M. & Chen, S. 2017. Membrane proteomics of Arabidopsis glucosinolate mutants cyp79b2/b3 and myb28/29. Frontiers in Plant Science 8(April).

Mueller, L.A., Zhang, P. & Rhee, S.Y. 2003. AraCyc: A biochemical pathway database for Arabidopsis. Plant Physiology 132: 453-460.

Neal, C.S., Fredericks, D.P., Griffiths, C.A. & Neale, A.D. 2010. The characterisation of AOP2: A gene associated with the biosynthesis of aliphatic alkenyl glucosinolates in Arabidopsis thaliana. BMC Plant Biology 10: 1-16.

Nour-Eldin, H.H. & Halkier, B.A. 2009. Piecing together the transport pathway of aliphatic glucosinolates. Phytochemistry Reviews 8(1): 53-67.

Nützmann, H.W., Huang, A. & Osbourn, A. 2016. Plant metabolic gene clusters - from genetics to genomics. New Phytologist 211(3): 771-789.

Obayashi, T., Kinoshita, K., Nakai, K., Shibaoka, M., Hayashi, S., Saeki, M., Shibata, D., Saito, K. & Ohta, H. 2007. ATTED-II: A database of co-expressed genes and cis elements for identifying co-regulated gene groups in Arabidopsis. Nucleic Acids Research 35: D863-D869.

Oh, E., Kang, H., Yamaguchi, S., Park, J., Lee, D., Kamiya, Y. & Choi, G. 2009. Genome-wide analysis of genes targeted by PHYTOCHROME INTERACTING FACTOR 3-LIKE5 during seed germination in Arabidopsis. The Plant Cell 21(2): 403-419.

Rameeh, V. 2015. Glucosinolates and their important biological and anti cancer effects: A review. Jordan Journal of Agricultural Sciences 11(1): 1-13.

Redovniković, I.R., Glivetic, T., Delonga, K. & Jasna Vorkapic- Furac. 2008. Glucosinolates and their potential role in plant. Periodicum Biologorum 110(4): 297-309.

Redovniković, I.R., Textor, S., Lisni, B. & Gershenzon, J. 2012. Expression pattern of the glucosinolate side chain biosynthetic genes MAM1 and MAM3 of Arabidopsis thaliana in different organs and developmental stages. Plant Physiology and Biochemistry 53: 77-83.

Rohr, F., Ulrichs, C. & Mewis, I. 2009. Variability of aliphatic glucosinolates in Arabidopsis thaliana (L.) - Impact on glucosinolate profile and insect resistance. Journal of Applied Botany and Food Quality 82(2): 131-135.

Roy, S., Bhattacharyya, D.K. & Kalita, J.K. 2016. Analysis of gene expression patterns using biclustering. Methods in Molecular Biology (Clifton, N.J.) 1375: 91-103.

Schuster, J., Knill, T., Reichelt, M., Gershenzon, J. & Binder, S. 2006. BRANCHED-CHAIN AMINOTRANSFERASE4 is part of the chain elongation pathway in the biosynthesis of methionine-derived glucosinolates in Arabidopsis. The Plant Cell 18: 2664-2679.

Seo, M. & Koshiba, T. 2002. Complex regulation of ABA biosynthesis in plants. Trends in Plant Science 7(1): 41-48.

Serin, E.A.R., Nijveen, H., Hilhorst, H.W.M. & Ligterink, W. 2016. Learning from co-expression networks: Possibilities and challenges. Frontiers in Plant Science 7(444): 1-18.

Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B. & Ideker, T. 2003. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research 13(11): 2498-2504.

Smita, S., Katiyar, A., Chinnusamy, V., Pandey, D.M. & Bansal, K.C. 2015. Transcriptional regulatory network analysis of myb transcription factor family genes in rice. Frontiers in Plant Science 6(December): 1-19.

Sønderby, I.E., Geu-flores, F. & Halkier, B.A. 2010. Biosynthesis of glucosinolates - gene discovery and beyond. Trends in Plant Science 15(5): 283-290.

Suryamohan, K. & Halfon, M. 2015. Identifying transcriptional cis-regulatory modules in animal genomes. Wiley Interdisciplinary Reviews. Developmental Biology 4(2): 59-84.

Szklarczyk, D., Morris, J.H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M., Santos, A., Doncheva, N.T., Roth, A., Bork, P., Jensen, L.J. & von Mering, C. 2017. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Research 45: D362-D368.

Textor, S., de Kraker, J.W., Hause, B., Gershenzon, J. & Tokuhisa, J.G. 2007. MAM3 catalyzes the formation of all aliphatic glucosinolate chain lengths in Arabidopsis. Plant Physiology 144(1): 60-71.

Toledo-Ortiz, G., Johansson, H., Lee, K.P., Bou-Torrent, J., Stewart, K., Steel, G., Rodríguez-Concepción, M. & Halliday, K.J. 2014. The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription. PLoS Genetics 10(6): e1004416.

van Dam, S., Võsa, U., van der Graaf, A., Franke, L. & de Magalhães, J.P. 2017. Gene co-expression analysis for functional classification and gene-disease predictions. Briefings in Bioinformatics (January): 1-18.

Wada, T., Kunihiro, A. & Tominaga-Wada, R. 2014. Arabidopsis CAPRICE (MYB) and GLABRA3 (bHLH) control tomato (Solanum lycopersicum) anthocyanin biosynthesis. PLoS ONE 9(9): e109093.

Warde-Farley, D., Donaldson, S.L., Comes, O., Zuberi, K., Badrawi, R., Chao, P., Franz, M., Grouios, C., Kazi, F., Lopes, C.T., Maitland, A., Mostafavi, S., Montojo, J., Shao, Q., Wright, G., Bader, G.D. & Morris, Q. 2010. The GeneMANIA prediction server: Biological network integration for gene prioritization and predicting gene function. Nucleic Acids Research 38: W214-W220.

Yilmaz, A., Mejia-Guerra, M.K., Kurz, K., Liang, X., Welch, L. & Grotewold, E. 2011. AGRIS: The Arabidopsis gene regulatory information server, an update. Nucleic Acids Research 39(SUPPL. 1): 1118-1122.

Yoshida, Y., Sano, R., Wada, T., Takabayashi, J. & Okada, K. 2009. Jasmonic acid control of GLABRA3 links inducible defense and trichome patterning in Arabidopsis. Development 136(6): 1039-1048.

Zhang, Y., Liu, Z., Liu, R., Hao, H. & Bi, Y. 2011. Gibberellins negatively regulate low temperature-induced anthocyanin accumulation in a HY5/HYH-dependent manner. Plant Signaling and Behavior 6(5): 632-634.

Zheng, Q., Zheng, Y. & Perry, S.E. 2013. AGAMOUS-Like15 promotes somatic embryogenesis in Arabidopsis and soybean in part by the control of ethylene biosynthesis and response. Plant Physiology 161(4): 2113-2127.

 

*Corresponding author; email: zeti.hussein@ukm.edu.my

 

 

 

 

previous