Sains Malaysiana 47(12)(2018): 3017–3023

http://dx.doi.org/10.17576/jsm-2018-4712-11

 

Aryl Diazonium Modification for Improved Graphite Fibre Brush in Microbial Fuel Cell

(Pengubahsuaian Aril Diazonium bagi Berus Gentian Grafit yang Lebih Baik dalam Sel Bahan Bakar Mikrob)

 

SITI FARAH NADIAH RUSLI1, MIMI HANI ABU BAKAR1*, SERATUL JEMIAH ABDUL RANI2, LOH KEE SHYUAN1 & MOHD SHAHBUDIN MASTAR1,3

 

1Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

3Faculty of Engineering and Build Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 30 May 2018 /Accepted: 18 September 2018

 

ABSTRACT

Aryl diazonium salts are coupling agents that assist in molecules attachment to interfaces for sensing purposes. Despite not being fully explored and not yet widely applicable for cell-based sensors, the high stability of aryl diazonium salt formed sensing system is highly favorable in biological applications. Carbon-based electrodes are the most commonly used in aryl diazonium modification due to its post grafting stable C-C bond formation. Here, salt bridge based microbial fuel cells (MFCs) were used to study on the effect of aryl diazonium modification on the anode graphite fibre brush. Aryl diazonium salts were in situ generated by the diazonation of p-phenylenediamine with NaNO2 in HCl solution. The electrochemical performance of the aryl diazonium modified graphite brush MFC was measured and compared with the unmodified graphite brush MFC. The power output of the modified graphite brush bioanode was higher (8.33 W/m3) than the unmodified graphite brush (7.60 W/m3) after 20 days of operation with ferricyanide as the catholyte. After 70 days of operation using phosphate buffer solution as the catholyte, the Pmax of modified brush was three times higher (0.06 W/m3) than of the unmodified brush (0.02 W/m3), which indicates an enhanced binding towards the substrate that facilitates a better electron transfer between the microbial and electrode surface.

 

Keywords: Aryl diazonium salt; graphite fibre brush modification; microbial fuel cell

 

ABSTRAK

Garam aril diazonium adalah agen gandingan yang membantu dalam pelekatan molekul pada antara muka untuk tujuan penderiaan. Walaupun tidak diterokai sepenuhnya dan belum digunakan secara meluas untuk sensor berasaskan sel, kestabilan tinggi garam aril diazonium yang terbentuk adalah sistem sensor yang sangat baik dalam aplikasi biologi. Elektrod berasaskan karbon adalah yang paling biasa digunakan dalam pengubahsuaian aril diazonium kerana pembentukan ikatan C-C yang stabil di akhir cantuman. Di sini, jambatan garam berasaskan sel bahan bakar mikrob (MFC) digunakan untuk mengkaji kesan pengubahsuaian aril diazonium pada berus gentian anod grafit. Garam aril diazonium dihasilkan secara in situ oleh pengasingan p-fenilenediamina dengan NaNO2 dalam larutan HCl. Prestasi elektrokimia berus grafit diubah suai aril diazonium diukur dan dibandingkan dengan berus grafit MFC yang tidak diubah suai. Hasil kuasa bioanod berus grafit yang diubah suai lebih tinggi (8.33 W/m3) daripada berus grafit yang tidak diubah suai (7.60 W/m3) selepas 20 hari beroperasi dengan ferrisianida sebagai katolit. Selepas 70 hari operasi menggunakan larutan fosfat sebagai katolit, Pmax berus yang diubah suai adalah tiga kali lebih tinggi (0.06 W/m3) daripada berus yang tidak diubah suai (0.02 W/m3). Keputusan ini menunjukkan pengubahsuaian memberi ikatan lebih baik ke arah substrat, sekaligus memudahkan pemindahan elektron yang lebih baik antara permukaan mikrob dan elektrod.

 

Kata kunci: Berus gentian anod grafit; garam aril diazonium; sel bahan bakar mikrob

REFERENCES

Abu Bakar, M.H., Pasco, N.F., Gooneratne, R. & Kim, B.H. 2016. Cellobiose dehydrogenase/epoxy- graphite composite with aryl diazonium reduction for lactose detection. Jurnal Teknologi 3: 97-105.

Brownson, D.A.C. & Banks, C.E. 2014. The Handbook of Graphene Electrochemistry. London: Springer-Verlag.

Dumas, C., Basseguy, R. & Bergel, A. 2008. Microbial electrocatalysis with Geobacter sulfurreducens biofilm on stainless steel cathodes. Electrochimica Acta 53(5): 2494- 2500.

Guo, K., Chen, X., Freguia, S. & Donose, B.C. 2013a. Spontaneous modification of carbon surface with neutral red from its diazonium salts for bioelectrochemical systems. Biosensors and Bioelectronics 47: 184-189.

Guo, K., Freguia, S., Dennis, P.G., Chen, X., Donose, B.C., Keller, J., Gooding, J.J. & Rabaey, K. 2013b. Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition and current generation in bioelectrochemical systems. Environmental Science and Technology 47(13): 7563-7570.

Lanas, V. & Logan, B.E. 2013. Evaluation of multi-brush anode systems in microbial fuel cells. Bioresource Technology 148: 379-385.

Li, W.W., Sheng, G.P., Liu, X.W. & Yu, H.Q. 2011. Recent advances in the separators for microbial fuel cells. Bioresource Technology 102(1): 244-252.

Liu, G., Chockalingham, M., Khor, S.M., Gui, A.L. & Justin Gooding, J. 2010. A comparative study of the modification of gold and glassy carbon surfaces with mixed layers of in situ generated aryl diazonium compounds. Electroanalysis 22(9): 918-926.

Logan, B., Cheng, S., Watson, V. & Estadt, G. 2007. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environmental Science and Technology 41(9): 3341-3346.

Logan, B.E., Rabaey, K., Hamelers, B., Aelterman, P., Freguia, S. & Verstraete, W. 2006. Critical review microbial fuel cells: Methodology and technology. Environmental Science & Technology 40(17): 5181-5192.

Picot, M., Lapinsonnière, L., Rothballer, M. & Barrière, F. 2011. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output. Biosensors and Bioelectronics 28(1): 181-188.

Pinson, J. 2012. Attachment of organic layers to materials surfaces by reduction of diazonium salts. In Aryl Diazonium Salts: New Coupling Agents in Polymer and Surface Science, edited by Chehimi, M.M. Germany: Wiley. VCH Verlag GmbH & Co. pp. 1-35.

Song, H., Zhu, Y., Li, J., Zhu, Y. & Li, J. 2015. Electron transfer mechanisms, characteristics and applications of biological cathode microbial fuel cells - A mini review. Arabian Journal of Chemistry https://doi.org/10.1016/j.arabjc.2015.01.008.

Song, T.S. & Jiang, H.L. 2011. Effects of sediment pretreatment on the performance of sediment microbial fuel cells. Bioresource Technology 102(22): 10465-10470.

Sun, J., Bi, Z., Hou, B., Cao, Y.Q. & Hu, Y.Y. 2011. Further treatment of decolorization liquid of azo dye coupled with increased power production using microbial fuel cell equipped with an aerobic biocathode. Water Research 45(1): 283-291.

Tasca, F., Harreither, W., Ludwig, R., Gooding, J.J. & Gorton, L. 2011. Cellobiose dehydrogenase aryl diazoniunn modified single walled carbon nanotubes: Enhanced direct electron transfer through a positively charged surface. Analytical Chemistry 83(8): 3042-3049.

Wei, J., Liang, P. & Huang, X. 2011. Recent progress in electrodes for microbial fuel cells. Bioresource Technology 102(20): 9335-9344.

Zhang, G.D., Zhao, Q.L., Jiao, Y., Zhang, J.N., Jiang, J.Q., Ren, N. & Kim, B.H. 2011. Improved performance of microbial fuel cell using combination biocathode of graphite fiber brush and graphite granules. Journal of Power Sources 196(15): 6036-6041.

Zhuang, L., Yuan, Y., Yang, G. & Zhou, S. 2012. In situ formation of graphene/biofilm composites for enhanced oxygen reduction in biocathode microbial fuel cells. Electrochemistry Communications 21: 69-72.

 

*Corresponding author; email: mimihani@ukm.edu.my

 

 

 

 

 

 

previous