Sains Malaysiana 47(1)(2018): 67–76

http://dx.doi.org/10.17576/jsm-2018-4701-08

 

Phosphorus Sorption and Saturation in the Ganges Tidal Floodplain Soils of Bangladesh

(Serapan Fosforus dan Penepuan dalam Tanah Dataran Banjir Pasang Surut Ganges di Bangladesh)

 

MD. FAZLUL HOQUE1, MD. HARUN-OR RASHID2, MD RAFIQUL ISLAM3, MD. SAIFUL ISLAM1,4* & MD. ABU SALEQUE5

 

1Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh

 

2Department of Agronomy, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh

 

3Department of Soil Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh

 

4Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan

 

5Bangladesh Rice Research Institute, Gazipur, Bangladesh

 

Received: 15 October 2015/Accepted: 19 June 2017

 

ABSTRACT

The soils developed from the Ganges sediments in the coastal area of Bangladesh and India extend several thousand hectares and important from the view point of rice cultivation. Phosphorus, one of the important environmental and agricultural element, retention behavior of the Ganges floodplain soils is poorly reported. The objective of this study was to determine maximum phosphorus adsorption capacity (MPAC) and to develop Psat for 13 Ganges Tidal Floodplain soils of Bangladesh. The MPAC value and Psat based on Mehlich-3 extractions were determined. The conventional adsorption equations, such as the Langmuir, Freudlich and Temkin equations were used to describe the P sorption of the studied soils. The MPAC value varied from 1250 to 2000 mg/kg and correlated with EC (r = 0.59, p<0.05) and CEC (r = -0.74, P<0.01). The sorption capacity of the tested soils ranged from 511 to 545 mg/kg and the calculated energy of adsorption of the soils varied from 0.192 to 1.00 μg/mL and it was a positively correlated with clay (r=0.7, p<0.01) and CEC (r = 0.63, p<0.05) but negatively with silt (r= -0.80, p<0.01), pH (H2O) (r=-0.60, p<0.05) and with MPAC (r=-0.59, p<0.05) values. Phosphorus saturation indices of the studied sample demonstrated a far below the threshold critical limit of 25%.

 

Keywords: Adsorption; Bangladesh; buffering capacity; Langmuir equation; phosphorus sorption

 

ABSTRAK

Tanah yang dibangunkan daripada enapan Ganges di pesisir pantai negara Bangladesh dan India menganjur beberapa ribu hektar dan penting daripada sudut pandangan penanaman padi. Fosforus, salah satu unsur penting dalam alam sekitar dan pertanian, tingkah laku penahanan di tanah dataran banjir Ganges telah dilaporkan secara tidak tepat. Objektif kajian ini adalah untuk menentukan kemampuan maksimum penjerapan fosforus (MPAC) dan untuk membangunkan Psat bagi 13 tanah Dataran banjir air pasang surut Ganges di Bangladesh. Nilai MPAC dan Psat berdasarkan pengekstrakan Mehlich-3 telah ditentukan. Persamaan penjerapan konvensional, seperti persamaan Langmuir, Freudlich dan Temkin telah digunakan untuk menggambarkan serapan P daripada tanah yang dikaji. Nilai MPAC berbeza-beza daripada 1250 kepada 2000 mg/kg dan berkorelasi dengan EC (r = 0.59, p<0.05) dan CEC (r =-0.74, P<0.01). Nilai kapasiti serapan tanah yang diuji adalah daripada 511 kepada 545 mg/kg dan tenaga yang dihitung daripada penjerapan tanah berbeza-beza daripada 0.192 kepada 1.00 μg/mL dan ia berkolerasi secara positif dengan tanah liat (r= 0.7, p<0.01) dan CEC (r=0.63, p<0.05) tetapi negatif dengan keladak (r=-0.80, p<0.01), pH (H2O) (r=-0.60, p<0.05) dan MPAC (r=-0.59, p<0.05). Indeks tepu fosforus sampel yang dikaji menunjukkan ia lebih rendah daripada had kritikal ambang 25%.

 

Kata kunci: Bangladesh; keupayaan penampanan; penjerapan; persamaan Langmuir; serapan fosforus

REFERENCES

Abedin, M.J. & Saleque, M.A. 1998. Effects of phosphorus fertilizer management on phosphorus sorption characteristics of lowland rice soil. Thai Journal of Agricultural Science 31: 122-129.

Adeniyi, A.A., Yusuf, K.O. & Okedeyi, O.O. 2008. Assessment of the exposure of two fish species to metals pollution in the Ogun river catchments, Kettu, Lagos, Nigeria. Environmental Monitoring and Assessment 137: 451-458.

Babou, O.J., Shiow-Long, T. & Zeng, Y.H. 2007. Relationship between compost pH buffer capacity and P content on P availability in a virgin Ultisol. Soil Science 172: 68-85.

Bartolome, V.I., Carrasco, M.C.C., Quintana, L.C., Ferino, M.I.B., Mojica, J.Z., Olea, A.B., Paunnlagui, L.C., Ramos, C.G., Ynalvez, M.A. & Mclaren, C.G. 1998. Experimental design and data analysis for agricultural research. Vol. 1. IRRI, Manila, Philippines.

Beauchemin, S. & Simadr, R.R. 1999. Soil phosphorus saturation degree: Review of some indices and their suitability for P management in Quebec, Canada. Canadian Journal of Soil Science 79: 615-625.

Davis, R.L., Zhang, H., Schroder, J.L., Wang, J.J., Payton, M. & Zazulak, A. 2005. Soil characteristics and phosphorus level effect on phosphorus loss in runoff. Journal of Environmental Quality 34: 1640-1650.

FRG. 2005. Fertilizer recommendation guide. Soils Publication No. 45. Bangladesh Agricultural Research Council, Farmgate, New Airport Road, Dhaka. p. 23.

Harter, R.D. 1984. Curve-fit errors in Langmuir adsorption Maxima. Soil Science Society of America Journal 48: 749- 752.

Hoque, M.F., Haque, M.A., Hossain, M.K., Haque, M.Z. & Hussain, A.S.M.I. 2011. Characterization of some coastal delta soils of Bangladesh. Journal of Bangladesh Society of Agricultural Science and Technology 8: 77-82.

Hoque, M.F., Islam, M.S., Islam, M.R., Rashid, M.H. & Saleque, M.A. 2015. Phosphorus fractionations in Ganges tidal floodplain soil of Bangladesh. Bangladesh Rice Journal 19(2): 57-63.

Huber, H., Jacobs, E. & Visser, E.J.W. 2009. Variation in flooding-induced morphological traits in natural populations of white clover (Trifolium repens) and their effects on plant performance during soil flooding. Annals of Botany 103: 377-386.

Ige, D.V., Akinremi, O.O. & Flaten, D.N. 2005. Environmental index for estimating the risk of phosphorus loss in calcareous soils of Manitoba. Journal of Environmental Quality 34: 1944-1951.

Islam, R.M. 2003. Phosphorus chemistry in wetland rice soil profile of a Vertic Haplustept. M.Sc. Thesis. Department of Soil Science. Bangabandhu Sheikh Mujibur Rahman Agricultural University, Salna, Gazipur (Unpublished).

Islam, M.S., Ahmed, M.K. & Al-mamun, M.H. 2015a. Metal speciation in soil and health risk due to vegetables consumption in Bangladesh. Environmental Monitoring and Assessment 187: 288-303.

Islam, M.S., Ahmed, M.K. & Al-mamun, M.H. 2015b. Distribution of trace elements in different soils and risk assessment: A case study for the urbanized area in Bangladesh. Journal of Geochemical Exploration 158: 212-222.

Islam, M.S., Ahmed, M.K., Al-mamun, M.H. & Masunaga, S. 2014. Trace metals in soil and vegetables and associated health risk assessment. Environmental Monitoring and Assessment 186: 8727-8739.

Islam, M.A., Saleque, M.A., Islam, M.S., Karim, A.J.M.S., Solaiman, A.R.M. & Islam, A. 2010. Phosphorus fractionations in acidic piedmont rice soils. Communication Soil Science and Plant Analysis 41: 1178-1194.

Islam, M.A., Saleque, M.A., Karim, A.J.M.S., Solaiman, A.R.M. & Masud, M.M. 2007. Characterization of acid piedmont rice soils for phosphorus sorption and phosphorus saturation. Bulletin of the Institute of Tropical Agriculture Kyushu Univ. 30: 11-27.

Kleinman, P.J.A. & Sharpley, A.N. 2002. Estimating phosphorus sorption saturation from Mehlich-3 data. Communications in Soil Science and Plant Analysis 33: 1825-1839.

Lair, G.J., Zehetner, F., Khan, Z.H. & Gerzabek, M.H. 2009. Phosphorus sorption-desorption in alluvial soils of a young weathering sequence at the Danube River. Geoderma 149: 39-44.

Litaor, M.I., Reichman, O., Haim, A., Auerswald, K. & Shenker, M. 2005. Sorption characteristics of phosphorus in peat soils of semiarid and altered wetland. Soil Science Society of America Journal 69: 1658-1665.

Manning, P., Putwain, P.D. & Webb, N.R. 2006. The role of soil phosphorus sorption characteristics in the functioning and stability of lowland heath ecosystems. Biogeochemistry 81: 205-217.

Mallarino, A.P. 1997. Interpretation of soil phosphorus tests for corn in soils with varying pH and calcium carbonate content. Journal of Production Agriculture 10: 163-167.

Mehadi, A.A. & Taylor, R.W. 1988. Phosphate adsorption by two highly weathered soils. Soil Science Society of America Journal 52: 627-632.

Mehlich, A. 1984. Mehlich-3 soil test extraction: A modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analysis 15: 1409-1416.

Mehra, O.P. & Jackson, M.L. 1960. Iron oxide removal from soils and clays by dithionite citrate system buffered with sodium bicarbonate. Proc. 7th Nat. Conf. Clays and Clay Min. New York: Pergamon Press. pp. 317-327.

Murphy, J. & Riley, J.P. 1962. A modified single solution method for determination of phosphate in natural waters. Analytica Chemica Acta27: 31-36.

Nelson, D.W. & Sommers, L.E. 1982. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties. 2nd ed., edited by Page, A.L., Miller, R.H. & Keeney, D.R. Madison, Wisconsin: American Society of Agronomy, Inc. & Soil Science Society of America, Inc. pp. 539-577.

Nizam, M.U., Shariful, M. & Saleque, M.A. 2008. Phosphorus sorption in clay loam soils influenced by phosphatic fertilizer. International Journal of Sustainable Agriculture 4: 12-17.

Rupa, T.R., Tomar, K.P., Srinivasa Rao, C.H. & Subba Rao, A. 2001. Kinetics of phosphate sorption-desorption as influenced by soil pH and electrolyte. Agrochimica 45: 124-133.

Saleque, M.A. & Kirk, G.J.D. 1995. Root-induced solubilization of phosphate in the rhizosphere of lowland rice. New Phytologist129: 325-336.

Saleque, M.A., Naher, U.A., Pathan, A.B.M.B.U., Hossain, A.T.M.S. & Meisner, C.A. 2004. Inorganic and organic phosphorus fertilizer effects on the phosphorus fraction in wetland rice soils. Soil Science Society of America Journal 68: 1635-1644.

Saleque, M.A., Uddin, M.K., Salam, M.A., Ismail, A.M. & Haefele, S.M. 2010. Soil characteristics of saline and non-saline deltas of Bangladesh. In Tropical Deltas and Coastal Zones: Food Production, Communities and Environment at the Land and Water Interface, edited by Hoanh, C.T., Szuster, B., Kam, S., Ismail, A. & Noble, A. CAB International, Wallingford, U.K. pp. 144-153.

Sharpley, A.N. 1996. Availability of residual phosphorus in manured soils. Soil Science Society of America Journal 60: 1459-1466.

Sui, Y. & Thompson, M.L. 2000. Phosphorus sorption, desorption and buffering capacity in a biosolids amended mollisol. Soil Science Society of America Journal 64: 164-169.

Wang, Y., Shen, Z., Niu, J. & Liu, R. 2008. Adsorption of phosphorus on sediments from the Three-Gorges Reservoir (China) and the relation with sediment composition. Hazard Mater. 18554791 (P.S.G.E.B.D). College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou 310029, PR China (Unpublished).

Wardle, D.A., Walker, L.R. & Bardgett, R.D. 2004. Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305: 509-513.

Zhang, H., Schroder, J.L., Furman, J.K., Basta, N.T. & Payton, M.E. 2005. Path and multiple regression analyses of phosphorus sorption capacity. Soil Science Society of America Journal 69: 96-106.

Zhou, M. & Li, Y. 2001. Phosphorus-sorption characteristics of calcareous soils and limestone from the southern everglades and adjacent farmlands. Soil Science Society of America Journal 65: 1404-1412.

 

*Corresponding author; email: islam-md.saiful-nj@ynu.jp

 

 

 

previous