Sains Malaysiana 47(2)(2018): 295-302

http://dx.doi.org/10.17576/jsm-2018-4702-11

 

Identification of Drought Tolerant Maize Genotypes and Seedling based Morpho-Physiological Selection Indices for Crop Improvement

(Pengenalpastian Genotip Jagung yang Tahan Kemarau dan Indeks Pemilihan Morfo-Fisiologi berasaskan Anak Benih untuk Pembaikan Tanaman)

 

Fahad Masoud Wattoo1, Rashid Mehmood Rana1, Sajid Fiaz2*, Syed Adeel Zafar3, Mehmood Ali Noor4, Hafiz Mumtaz Hassan5, Muhammad Husnain Bhatti6, Shoaib ur Rehman4, Galal Bakr Anis7 & Rai Muhammad Amir8

 

1Department of Plant Breeding & Genetics, PMAS-Arid Agriculture University, Rawalpindi, Pakistan

 

2State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China

 

3National Key Facility of Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China

 

4Institute of Crop Science, Chinese Academy of Agricultural Sciences, Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Beijing 100081, China

 

5Nuclear Institute for Agriculture and Biology, Jhang Rd, Faisalabad, Pakistan

 

6Ayub Agriculture Research Institute, Jhang Rd, Faisalabad, Pakistan

 

7Field Crop Research Institute, Agriculture Research Centre, Egypt

 

8Institute of Food and Nutritional Sciences, PMAS-Arid Agriculture University Rawalpindi, Pakistan

 

Received: 28 May 2017/Accepted: 14 August 2017

 

ABSTRACT

 

Maize is an imperative grain crop used as a staple food in several countries around the world. Water deficiency is a serious problem limiting its growing area and production. Identification of drought tolerant maize germplasm is comparatively easy and sustainable approach to combat this issue. Present research was conducted to evaluate 50 maize genotypes for drought tolerance at early growth stage. Drought tolerance was assessed on the basis of several morphological and physiological parameters. Analysis of variance showed significant variation among the tested maize genotypes for recorded parameters. Principal component analysis revealed important morpho-physiological traits that were playing key role in drought tolerance. Correlation studies depicted significant positive correlation among the attributes such as fresh shoot length (FSL), fresh root length (FRL), dry shoot weight (DSW), dry root weight (DRW), relative water contents (RWC) and total dry matter (TDM) while a strongly negative correlation was observed among RWC and excised leaf water loss. Results concluded that the parameters fresh shoot weight, fresh root weight, FRL, DRW, TDM, cell membrane thermo stability (CMT) and RWC can be useful for rapid screening of maize germplasm for drought tolerance at early growth stages. Furthermore, the genotypes 6, 16, 18, 40, 45 and 50 can be used as a drought tolerant check in breeding programs. Moreover, biplot analysis along with other indices was proved to be a useful approach for rapid and cost efficient screening of large number of genotypes against drought stress condition.

 

Keywords: Cell membrane thermo stability; correlation; drought tolerance; principal component analysis; relative water contents

 

ABSTRAK

Jagung adalah tanaman bijirin penting yang digunakan sebagai makanan ruji di beberapa negara di seluruh dunia. Kekurangan air adalah masalah serius yang membatasi kawasan dan pengeluarannya yang semakin meningkat. Pengenalpastian germplasma jagung yang tahan kemarau adalah pendekatan yang agak mudah dan mampan untuk memerangi isu ini. Penyelidikan kini dijalankan untuk menilai 50 genotip jagung untuk toleransi kemarau pada peringkat pertumbuhan awal. Ketahanan kemarau dinilai berdasarkan beberapa parameter morfologi dan fisiologi. Analisis varians menunjukkan variasi ketara antara genotip jagung yang diuji untuk parameter yang direkodkan. Analisis komponen utama mendedahkan ciri morfo-fisiologi yang memainkan peranan penting dalam ketahanan kemarau. Kajian korelasi menunjukkan korelasi positif yang signifikan antara ciri seperti panjang pucuk segar (FSL), panjang akar segar (FRL), berat pucuk kering (DSW), berat akar kering (DRW), kandungan air relatif (RWC) dan jumlah bahan kering (TDM) manakala korelasi yang sangat negatif diperhatikan dalam kalangan RWC dan mengurangkan kehilangan air daun. Keputusannya menyimpulkan bahawa parameter pucuk berat baru, berat akar segar, FRL, DRW, TDM, kestabilan thermo membran sel (CMT) dan RWC adalah berguna untuk penapisan pantas germplasma jagung untuk ketahanan kemarau pada peringkat pertumbuhan awal. Selain itu, genotip 6, 16, 18, 40, 45 dan 50 boleh digunakan sebagai pemeriksaan ketahanan kemarau dalam program pembiakan. Selain itu, analisis biplot bersama-sama dengan indeks lain telah terbukti merupakan pendekatan yang berguna untuk penapisan pantas dan cekap kos untuk sejumlah besar genotip terhadap keadaan tekanan kemarau.

 

Kata kunci: Analisis komponen utama; kandungan air relatif; kestabilan thermo membran sel; ketahanan kemarau; korelasi

 

REFERENCES

 

Abbasi, G.H., Ijaz, M., Akhtar, J., Anwar Ul-Haq, M., Jamil, M., Ali, S., Ahmad, R. & Khan, H.N. 2016. Profiling of anti-oxidative enzymes and lipid peroxidation in leaves of salt tolerant and salt sensitive maize hybrids under NaC1 and Cd stress. Sains Malaysiana 45(2): 177-184.

Ahmadzadeh, A. 1997. Determination of the best drought tolerance index in selected maize (Zea mays L.) lines, MSc. Thesis, Tehran University, Tehran, Iran (Unpublished).

Ali, M.A., Niaz, S., Abbas, A., Sabir, W. & Jabran, K. 2009. Genetic diversity and assessment of drought tolerant sorghum landraces based on morph-physiological traits at different growth stages. Plant Omics 2(5): 214-227.

Ali, Q., Ahsan, M., Mustafa, H.S.B. & Hasan, E.U. 2013. Studies of genetic variability and correlation among morphological traits of maize (Zea mays L.) at seedling stage. Albanian Journal of Agricultural Sciences 12(3): 405-410.

Ali, Q., Elahi, M., Ahsan, M., Tahir, M.H.N. & Basra, S.M.A. 2011. Genetic evaluation of maize (Zea mays L.) genotypes at seedling stage under moisture stress. International Journal for Agro Veterinary and Medical Sciences 5(2): 184-193.

Ali, Z., Salam, A., Azhar, F.M., Khan, I.A., Khan, A.A., Bahadur, S., Mahmood, T., Ahmad, A. & Trethowan, R. 2012. The response of genetically distinct bread wheat genotypes to salinity stress. Plant Breeding 131(6): 707-715.

Amini, Z., Khodambashi, M. & Houshmand, S. 2013. Correlation and path coefficient analysis of seed yield related traits in maize. International Journal of Agriculture and Crop Sciences 5(19): 2217-2220.

Gonzales, A. & Ayerbe, L. 2011. Response of coleoptiles to water deficit: Growth, turgor maintenance and osmotic adjustment in barley plants (Hordeum vulgare L.). Agricultural Sciences 2(3): 159-166.

Bayoumi, T.Y., Eid, M.H. & Metwali, E.M. 2008. Application of physiological and biochemical indices as a screening technique for drought tolerance in wheat genotypes. African Journal of Biotechnology 7(14): 2341-2352.

Brown-Guedira, G.L., Thompson, J.A., Nelson, R.L. & Warburton, M.L. 2000. Evaluation of genetic diversity of soybean introductions and North American ancestors using RAPD and SSR markers. Crop Science 40(3): 815-823.

Chohan, M.S.M., Saleem, M., Ahsan, M. & Asghar, M. 2012. Genetic analysis of water stress tolerance and various morpho-physiological traits in (Zea mays L.) using graphical approach. Pakistan Journal of Nutrition 11(5): 489-500.

Clarke, J.M. & Townley-Smith, T.F. 1986. Heritability and relationship to yield of excised-leaf water retention in durum wheat. Crop Science 26(2): 289-292.

De La Cruz, M., Roberto, L.R., Adrián, E. & Maestre, F.T. 2008. Where do seedlings go? A spatiotemporal analysis of seedling mortality in a semiarid gypsophyte. Ecography 31(6): 720-730.

Egilla, J.N., Davies, F.T. & Boutton. T.W. 2005. Drought stress influences leaf water content, photosynthesis, and water-use efficiency of Hibiscus rosa-sinensis at three potassium concentrations. Photosynthetica 43(1): 135-140.

Frova, C., Krajewski, P., Fonzo, N.D., Villa, M. & Sari-Gorla, M. 1999. Genetic analysis of drought tolerance in maize by molecular markers I. Yield components. Theoretical and Applied Genetics 99(1-2): 280-288.

Garc?́a-Mata, C. & Lamattina, L. 2001. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiology 126(3): 1196-1204.

Guttieri, M., Bowen, D., Dorsch, J.A., Raboy, V. & Souza, E. 2004. Identification and characterization of a low phytic acid wheat. Crop Science 44(2): 418-424.

Ibrahim, A.M.H. & Quick, J.S. 2001. Genetic control of high temperature tolerance in wheat as measured by membrane thermal stability. Crop Science 41(5): 1405-1407.

Jaleel, C.A., Manivannan, P., Lakshmanan, G.M.A., Gomathinayagam, M. & Panneerselvam. R. 2008. Alterations in morphological parameters and photosynthetic pigment responses of Catharanthus roseus under soil water deficits. Colloids and Surfaces B: Biointerfaces 61(2): 298-303.

Javed, I. 2012. Genetics of some potential parameters in Zea mays L. under normal and moisture deficit conditions, University of Agriculture, Faisalabad (Unpublished).

Kashiwagi, J., Krishnamurthy, L., Upadhyaya, H.D., Krishna, H., Chandra, S., Vadez, V. & Serraj, R. 2005. Genetic variability of drought-avoidance root traits in the mini-core germplasm collection of chickpea (Cicer arietinum L.). Euphytica 146(3): 213-222.

Khan, N.H., Ahsan, M., Saleem, M. & Ali, A. 2014. Genetic association among various morpho-physiological traits of Zea mays under drought condition. Life Science Journal 11: 112-122.

Khodarahmpour, Z. & Hamidi, J. 2011. Evaluation of drought tolerance in different growth stages of maize (Zea mays L.) inbred lines using tolerance indices. African Journal of Biotechnology 10(62): 13482-13490.

Kirigwi, F.M., Ginkel, M.V., Trethowan, R., Sears, R.G., Rajaram, S. & Paulsen, G.M. 2004. Evaluation of selection strategies for wheat adaptation across water regimes. Euphytica 135(3): 361-371.

Kitajima, K. & Fenner, M. 2000. Ecology of seedling regeneration. In Seeds, the Ecology of Regeneration in Plant Communities, edited by Fenner, M. Oxforshire: CABI. pp. 331-359.

Meeks, M., Murray, S.C., Hague, S. & Hays, D. 2013. Measuring maize seedling drought response in search of tolerant germplasm. Agronomy 3(1): 135-147.

Mehdi, S.S., Ahmad, N. & Ahsan, M. 2001. Evaluation of S1 maize (Zea mays L.) families at seedling stage under drought conditions. Online Journal of Biological Sciences 1: 4-6.

Mustafa, H.S.B., Ahsan, M., Aslam, M., Ali, Q., Bibi, T., Hasan, E. & Mehmood, T. 2013. Genetic variability and traits association in maize (Zea mays L.) accessions under drought stress. Journal of Agricultural Research 51(3): 231-238.

Neelima, S. & Reddy, V.C. 2008. Genetic parameters of yield and fibre quality traits in American cotton (Gossypium hirsutum L.). Indian Journal of Agricultural Research 42(1): 67-70.

Nour, A.E.M. & Weibel, D.E. 1978. Evaluation of root characteristics in grain sorghum. Agronomy Journal 70(2): 217-218.

Nzuve, F., Githiri, S., Mukunya, D.M. & Gethi, J. 2014. Genetic variability and correlation studies of grain yield and related agronomic traits in maize. Journal of Agricultural Science 6(9): 166-176.

Qayyum, A., Razzaq, A., Ahmad, M. & Jenks, M.A. 2011. Water stress causes differential effects on germination indices, total soluble sugar and proline content in wheat (Triticum aestivum L.) genotypes. African Journal of Biotechnology 10(64): 14038-14045.

Rezaeieh, K.A. & Eivazi, A. 2011. Evaluation of morphological characteristics in five Persian maize (Zea mays L.) under drought stress. African Journal of Agricultural Research 6(18): 4409-4411.

Seghatoleslami, M.J., Kafi, M. & Majidi, E. 2008. Effect of drought stress at different growth stages on yield and water use efficiency of five proso millet (Panicum miliaceum L.) genotypes. Pakistan Journal of Botany 40(4): 1427-1432.

Shrimali, M. 2001. Studies on morphological parameters contributing to drought tolerance in cereals. India New Botanist 28(1/4): 91.

Singh, B.D. & Singh. B.D. 1999. Plant Breeding: Principles and Methods. New Delhi: Kalyani Publishers.

Taiz, L. & Zeiger, E. 2006. Stress physiology. In Plant Physiology. 4th ed. Massachusetts: Sinauer Associates, Inc.

Thiry, A.A., Dulanto, P.N.C., Reynolds, M.P. & Davies, W.J. 2016. How can we improve crop genotypes to increase stress resilience and productivity in a future climate? A new crop screening method based on productivity and resistance to abiotic stress. Journal of Experimental Botany 67(19): 5593-5603.

Waqas, M.A., Khan, I., Akhter, M.J., Noor, M.A. & Ashraf, U. 2017. Exogenous application of plant growth regulators (PGRs) induces chilling tolerance in short-duration hybrid maize. Environmental Science and Pollution Research International 24(12): 11459-11471. doi: 10.1007/s11356-017-8768-0.

Wu, Y. & Cosgrove, D.J. 2000. Adaptation of roots to low water potentials by changes in cell wall extensibility and cell wall proteins. Journal of Experimental Botany 51(350): 1543-1553.

Zafar, S.A., Hameed, A., Khan, A.S. & Ashraf, M. 2017. Heat shock induced morpho-physiological response in indica rice (Oryza sativa L.) at early seedling stage. Pakistan Journal of Botany 49(2): 453-463.

Zafar, S.A., Shokat, S., Ahmed, H.G.M., Khan, A., Ali, M.Z. & Atif, R.M. 2015. Assessment of salinity tolerance in rice using seedling based morpho-physiological indices. Advancement in Life Sciences 2(4): 142-149.

 

 

*Corresponding author; email: fiazsajid05@yahoo.com

 

 

 

 

 

previous