Sains Malaysiana 47(3)(2018): 603–610

http://dx.doi.org/10.17576/jsm-2018-4703-22

 

FeCl3-Activated Carbon Developed from Coconut Leaves: Characterization and Application for Methylene Blue Removal

(Karbon Teraktif-FeCl3 daripada Daun Kelapa: Pencirian dan Aplikasi terhadap Penyingkiran Metilena Biru)

 

RAMLAH ABD RASHID1,2*, ALI H. JAWAD1, MOHD AZLAN BIN MOHD ISHAK2 & NUR NASULHAH KASIM2

 

1Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam Campus, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia

 

2Faculty of Applied Sciences, Universiti Teknologi MARA, Arau Campus, 02600 Arau, Perlis Indera Kayangan, Malaysia

 

Received: 4 April 2017/Accepted: 13 October 2017

 

ABSTRACT

In this study, coconut leaves were used as a starting material for the production of activated carbon by thermal carbonization using FeCl3-activation method. The characterization of coconut leaves-FeCl3 activated carbon (FAC) were evaluated by bulk density, ash content, moisture content, point-of-zero charge (pHpzc) analysis, iodine test, scanning electron microscopy (SEM), Fourier transform infrared (FTIR) and elemental (CHNS-O) analysis. The effect of the adsorbent dosage (0.02-0.25 g), initial pH (3-11), initial dye concentrations (30-350 mg/L) and contact time (1-180 min) on the adsorption of the methylene blue (MB) at 303 K was performed via batch experiments. The Pseudo-Second Order (PSO) describes the kinetic model well whereas the Langmuir isotherm proved that adsorption behavior at equilibrium with maximum adsorption capacity (qmax) of 66.00 mg/g.

 

Keywords: Activated carbon; adsorption; coconut leaves; ferric chloride; methylene blue; thermal activation

 

ABSTRAK

Dalam kajian ini, daun kelapa telah dipilih sebagai bahan pemula bagi penghasilan karbon teraktif melalui penkarbonan haba dengan menggunakan FeCl3 sebagai agen pengaktif. Pencirian karbon teraktif (FAC) dianalisis dengan menggunakan mikroskop imbasan elektron (SEM), transformasi Fourier inframerah (FTIR) dan analisis elemen (CHNS-O). Beberapa parameter yang mempengaruhi penyahwarnaan metilena biru pada suhu 303 K seperti dos bahan penjerap (0.02-0.25 g), pH awal (3-11), kepekatan (30-350 mg/L) dan masa (0-180 min) telah dikaji dan dioptimumkan dengan menggunakan kaedah uji kaji berkumpulan. Model kinetik Pseudo-Pertama dan Pseudo-Kedua telah digunakan untuk menganalisis mekanisme yang terlibat dalam proses penjerapan. Nilai korelasi (R2) yang ditunjukkan oleh FAC terhadap model kinetik tertib Pseudo- Kedua lebih tinggi berbanding tertib Pseudo-Pertama. Data isoterma penjerapan dikaji dengan model isoterma seperti Langmuir, Freundlich dan Temkin. Proses penjerapan dikenal pasti mengikuti model Langmuir dengan kapasiti penjerapan maksimum (qmax) dicapai sebanyak 66.00 mg/g.

 

Kata kunci: Daun kelapa; ferik klorida; karbon teraktif; metilena biru; pengaktifan haba; penjerapan

 

REFERENCES

 

Abdullah, A.H., Kasim, A., Zainal, Z., Hussien, M.Z., Kuang, D., Ahmad, F. & Wooi, O.S. 2001. Preparation and characterization of activated carbon from Gelam Wood bark (Melaleuca cajuputi). Malays. J. Anal. Sci. 7(1): 65-68.

Acosta, R., Fierro, V., de Yuso, A.M., Nabarlatz, D. & Celzard, A. 2016. Tetracycline adsorption onto activated carbons produced by KOH activation of tyre pyrolysis char. Chemosphere 149: 168-176.

Ahmed, M.J. & Dhedan, S.K. 2012. Equilibrium isotherms and kinetics modeling of methylene blue adsorption on agricultural wastes-based activated carbons. Fluid Phase Equilib. 317: 9-14.

Akbal, F. 2005. Adsorption of basic dyes from aqueous solution onto pumice powder. J. Colloid Interface Sci. 286: 455-458.

ASTM D4607-14, Standard Test Method for Determination of Iodine Number of Activated Carbon, ASTM International, West Conshohocken, PA, 2014, www.astm.org.

Balakrishnan, M. & Satyawali, Y. 2007. Removal of color from biomethanated distillery spentwash by treatment with activated carbons. Bioresour. Technol. 98: 2629-2635.

Baseri, J.R., Palanisamy, P.N. & Sivakumar, P. 2012. Preparation and characterization of activated carbon from Thevetia peruviana for the removal of dyes from textile waste water. Adv. Appl. Sci. Res. 3(1): 377-383.

Benadjemia, M., Millière, L., Reinert, L., Benderdouche, N. & Duclaux, L. 2011. Preparation, characterization and methylene blue adsorption of phosphoric acid activated carbons from globe artichoke leaves. Fuel Process. Technol. 92(6): 1203-1212.

Bhatnagar, A., Sillanpää, M. & Witek-Krowiak, A. 2015. Agricultural waste peels as versatile biomass for water purification-A review. Chem. Eng. J. 270: 244-271.

Bhatnagar, A. & Sillanpää, M. 2010. Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment-A review. Chem. Eng. J. 157(23): 277- 296.

Bonomo, L. 2008. Wastewater Treatment. Italy: McGraw Hill Education. p. 637.

Cazetta, A.L., Vargas, A.M.M., Nogami, E.M., Kunita, M.H., Guilherme, M.R., Martins, A.C., Silva, T.L., Moraes, J.C.G. & Almeida, V.C. 2011. NaOH-activated carbon of high surface area produced from coconut shell: Kinetics and equilibrium studies from the methylene blue adsorption. Chem. Eng. J. 174: 117-125.

Etim, U.J., Umoren, S.A. & Eduok, U.M. 2016. Coconut coir dust as a low cost adsorbent for the removal of cationic dye from aqueous solution. J. of Saudi Chem. Soc. 20(1): S67-S76.

Freundlich, H.M.F. 1906. Over the adsorption in solution. J. Phys. Chem. 57: 385-470.

Fan, L., Zhou, Y., Yang, W., Chen, G. & Yang, F. 2008. Electrochemical degradation of aqueous solution of amaranth azo dye on ACF under potentiostatic model. Dyes Pigm. 76: 440-446.

Gao, L., Dong, F.Q., Dai, Q.W., Zhong, G.Q., Halik, U. & Lee, D.J. 2016. Coal tar residues based activated carbon: Preparation and characterization. J. Taiwan Inst. Chem. Eng. 63: 166-169.

Garg, V.K., Kumar, R. & Gupta, R. 2004. Removal of malachite green dye from aqueous solution by adsorption using agro-industry waste: A case study of Prosopis cineraria. Dyes Pigm. 62(1): 1-10.

Gupta, V.K. 2009. Application of low-cost adsorbents for dye removal - A review. J. Environ. Manage. 90: 2313-2342.

De Gisi, S., Lofrano, G., Grassi, M. & Notarnicola, M. 2016. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustain. Mater. Technol. 9: 10-40.

Hamdaoui, O. & Chiha, M. 2007. Removal of methylene blue from aqueous solutions by wheat bran. Acta Chimica Slovenica 54(2): 407-418.

Isah, U., Abdulraheem, G., Bala, S., Muhammad, S. & Abdullahi, M. 2015. Kinetics, equilibrium and thermodynamics studies of C.I. reactive blue 19 dye adsorption on coconut shell based activated carbon. Int. Biodeterior. Biodegrad. 102: 265-273.

Jawad, A.H., Ishak, M.A.M., Farhan, A.M. & Ismail, K. 2017a. Response surface methodology approach for optimization of color removal and COD reduction of methylene blue using microwave-induced NaOH activated carbon from biomass waste. Desalin. Water Treat. 62: 208-220.

Jawad, A.H., Rashid, R.A., Ismail, K. & Sabar, S. 2017b. High surface area mesoporous activated carbon developed from coconut leaf by chemical activation with H3PO4 for adsorption of methylene blue. Desalin. Water Treat. 74: 326-335.

Jawad, A.H., Islam, M.A. & Hameed, B.H. 2017c. Cross-linked chitosan thin film coated onto glass plate as an effective adsorbent for adsorption of reactive orange 16. Int. J. Biol. Macromolec. 95: 743-749.

Jawad, A.H., Mamat, N.F.H., Abdullah, M.F. & Ismail, K. 2017d. Adsorption of methylene blue onto acid-treated mango peels: Kinetic, equilibrium and thermodynamic. Desalin. Water Treat. 59: 210-219.

Jawad, A.H., Mubarak, N.S.A. & Nawawi, W.I. 2016a. Optimization of sorption parameters for color removal of textile dye by cross-linked chitosan beads using box- Behnken design. MATEC Web of Conferences 47: 05009.

Jawad, A.H., Rashid, R.A., Mahmuod, R.M.A., Ishak, M.A.M., Kasim, N.N. & Ismail, K. 2016b. Adsorption of methylene blue onto coconut (Cocos nucifera) leaf: Optimization, isotherm and kinetic studies. Desalin. Water Treat. 57: 8839-8853.

Jawad, A.H., Mubarak, N.S.A., Ishak, M.A.M., Ismail, K. & Nawawi, W.I. 2016c. Kinetics of photocatalytic decolourization of cationic dye using porous TiO2 film. J. Taibah Univ. Sci. 10(3): 352-362.

Jawad, A.H., Rashid, R.A., Ishak, M.A.M. & Wilson, L.D. 2016d. Adsorption of methylene blue onto activated carbon developed from biomass waste by H2SO4 activation: Kinetic, equilibrium and thermodynamic studies. Desalin. Water Treat. 57: 25194-25206.

Jawad, A.H., Alkarkhi, A.F.M. & Mubarak, N.S.A. 2015. Photocatalytic decolorization of methylene blue by an immobilized TiO2 film under visible light irradiation: Optimization using response surface methodology (RSM). Desalin. Water Treat. 56: 161-172.

Johari, K., Saman, N., Song, S.T., Chin, C.S., Kong, H. & Mat, H. 2016. Adsorption enhancement of elemental mercury by various surface modified coconut husk as eco-friendly low-cost adsorbents. Int. Biodeterior. Biodegrad. 109: 45-52.

Khataee, A.R., Movafeghi, A., Torbati, S., SalehiLisar, S.Y. & Zarei, M. 2012. Phytoremediation potential of duckweed  (Lemna minor L.) in degradation of C.I. acid blue 92: Artificial neural network modeling. Ecotoxicol. Environ. Saf. 80: 291-298.

Langmuir, I. 1918. The adsorption of gases on pane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40: 1361-1403.

Lata, H., Garg ,V.K. & Gupta, R.K. 2007. Removal of a basic dye from aqueous solution by adsorption using parthenium hysterophorus: An agricultural waste. Dye. Pigment 74(3): 653-658.

Liu, Q.S., Zheng, T., Li, N., Wang, P. & Abulikemu, G. 2016. Modification of bamboo-based activated carbon using microwave radiation and its effects on the adsorption of methylene blue. Appl. Surface Sci. 256: 3309-3315.

Lopez-Ramon, M.V., Stoeckli, F., Moreno-Castilla, C. & Carrasco-Marin, F. 1999. On the characterization of acidic and basic surface sites on carbons by various techniques. Carbon 37(8): 1215-1221.

Naeem, S., Baheti, V., Militky, J., Wiener, J., Behera, P. & Ashraf, A. 2016. Sorption properties of iron impregnated activated carbon web for removal of methylene blue from aqueous media. Fibers and Polymers 17(8): 1245-1255.

Marrakchi, F., Ahmed, M.J., Khanday, W.A., Asif, M. & Hameed, B.H. 2017. Mesoporous activated carbon prepared from chitosan flakes via single-step sodium hydroxide activation for the adsorption of methylene blue. Int. J. Biol. Macromol. 98: 233-239.

Mubarak, N.S.A., Jawad, A.H. & Nawawi, W.I. 2017. Equilibrium, kinetic and thermodynamic studies of reactive red 120 dye adsorption by chitosan beads from solution. Energ. Ecol. Environ. 2: 85-93.

Ncibi, M.C., Mahjoub, B. & Seffen, M. 2007. Kinetic and equilibrium studies of methylene blue biosorption by Posidonia oceanica (L.) fibres. J. Hazard. Mater. 139(2): 280-285.

Njoku, V.O., Islam, M.A., Asif, M. & Hameed, B.H. 2014. Preparation of mesoporous activated carbon from coconut frond for the adsorption of carbofuran insecticide. J. Anal. Appl. Pyrolysis 110: 172-180.

Oliveira, L.C., Pereira, E., Guimaraes, I.R., Vallone, A., Pereira, M., Mesquita, J.P. & Sapag, K. 2009. Preparation of activated carbons from coffee husks utilizing FeCl3 and ZnCl2 as activating agents. J. Hazard. Mater. 165: 87-94.

Rashid, R.A., Jawad, A.H., Ishak, M.A.M. & Kasim, N.N. 2016. KOH-activated carbon developed from biomass waste: Adsorption equilibrium, kinetic and thermodynamic studies for methylene blue uptake. Desalin. Water Treat. 57: 27226-27236.

Reffas, A., Bernardet, V., David, B., Reinert, L., Lehocine, M.B., Dubois, M., Batisse, N. & Duclaux, L. 2010. Carbons prepared from coffee grounds by H3PO4 activation: Characterization and adsorption of methylene blue and nylosan red N-2RBL. J. Hazard. Mater. 175: 779-788.

Shah, I., Adnan, R., Ngah, W. & Norita, M. 2015. Iron impregnated activated carbon as an efficient adsorbent for the removal of methylene blue: Regeneration and kinetics studies. PLoS ONE 10(4): e0122603.

Shah, I., Ngah, R., Mohammed, N. & Yap, Y. 2014. A new insight to the physical interpretation of activated carbon and iron doped carbon material: Sorption affinity towards organic dyes. Bioresource Technol. 160: 52-56.

Somasekhara Rao, K., Prasad, N.V.V.S., Ram Babu, C., Kishore, M., Ravi, M. & Krishna Vani, K. 2005. Preparation and characterization of low cost adsorbent carbons. Chem. Environ. Res. 14 (1&2): 129-135.

Temkin, M.J. & Pyzhev, V. 1940. Recent modification to Langmuir isotherms. Acta Physiochemical USSR 12: 217- 222.

Uçar, S., Erdem, M., Tay, T. & Karagöz, S. 2009. Preparation and characterization of activated carbon produced from pomegranate seeds by ZnCl2 activation. Appl. Surf. Sci. 255: 8890-8896.

Vieira, A.P., Santana, S.A.A., Bezerra, C.W.B., Silva, H.A.S., de Melo, J.C.P., da Silva Filho, E.C. & Airoldi, C. 2010. Copper sorption from aqueous solutions and sugar cane spirits by chemically modified Babassu coconut (Orbignya speciosa) mesocarp. Chem. Eng. J. 161: 99-105.

Vieira, A.P., Santana, S.A.A., Bezerra, C.W.B., Silva, H.A.S., Chaves, J.A.P., Melo, da S. & Airoldi, C. 2009. Kinetics and thermodynamics of textile dye adsorption from aqueous solutions using Babassu coconut mesocarp. J. Hazard. Mater. 166: 1272-1278.

Woo, Y.S., Rafatullah, M., Al-Karkhi, A.F.M. & Tow, T.T. 2013. Removal of terasil red R dye by using fenton oxidation: A statistical analysis. Desal. Water Treat. 52(22-24): 4583- 4591.

Wu, J.S., Liu, C.H., Chu, K.H. & Suen, S.Y. 2008. Removal of cationic dye methyl violet 2B from water by cation exchange membranes. J. Membr. Sci. 309: 239-245.

Xu, J., Chen, L., Qu, H., Jiao, Y., Xie, J. & Xing, G. 2014. Preparation and characterization of activated carbon from reedy grass leaves by chemical activation with H3PO4. Appl. Surface Sci. 320: 674-680.

 

 

*Corresponding author; email: ramlahabdrashid@yahoo.com

 

 

 

previous