Sains Malaysiana 47(5)(2018): 1011–1016

http://dx.doi.org/10.17576/jsm-2018-4705-17

 

Kesan Kemasan Permukaan Berbeza terhadap Sifat Mikromekanik Sambungan Pateri Sac 0307 Menggunakan Pendekatan Pelekukan Nano

(Effect of Different Surface Finishes on Micromechanical Properties of Sac 0307 Solder Joint using Nanoindentation Approach)

 

MARIA ABU BAKAR1, AZMAN JALAR1,2* & ROSLINA ISMAIL1

 

1Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 15 August 2017/Accepted: 30 December 2017

 

 

ABSTRAK

 

Sifat fizik dan mekanik sambungan pateri pada papan litar bercetak (PCB) sangat bergantung kepada bahan pateri dan permukaan penglogaman PCB. Kemajuan penyelidikan dan pembangunan bahan pateri bebas plumbum membuka peluang untuk menghasilkan sambungan pateri yang mempunyai kebolehtahanan yang tinggi. PCB/Cu merupakan PCB tanpa kemasan digunakan sebagai sampel kawalan manakala dua PCB yang lain iaitu PCB/ImSn (immersion tin) dan PCB/ENiG (electroless nickel immersion gold) dipilih untuk mengkaji kestabilan sambungan pateri. Sambungan pateri pada kemasan permukaan yang berbeza didedahkan kepada penyimpanan suhu tinggi (HTS) pada suhu 175°C selama 1000 jam untuk mengkaji perubahan sifat mikromekanik. Ujian pelekukan nano memberikan sifat mikromekanik yang bersifat setempat. Perubahan kekerasan antarasambungan SAC 0307 selepas HTS ialah 66 MPa bagi PCB/Cu, 107 MPa bagi PCB/ImSn dan 45 MPa bagi PCB/ENiG. Analisis terhadap sifat mikromekanik mendapati bahawa PCB/ENiG menunjukkan perubahan nilai yang minimum berbanding dengan PCB/Cu dan PCB/ImSn. Ini menunjukkan PCB/ENiG memberikan kestabilan sifat mikromekanik yang tinggi selepas didedahkan pada HTS pada suhu 175°C selama 1000 jam

.

Kata kunci: Bahan pateri Sn-Ag-Cu; kemasan permukaan; pelekukan nano; sambungan pateri; sifat mikromekanik

ABSTRACT

Physical and mechanical properties of solder joints on printed circuit boards (PCB) depend on the solder materials and PCB surface metallization. Advances in research and development of lead-free solder materials provide an opportunity to produce solder joint with high reliability. PCB/Cu is a PCB without surface finish used as control sample while the other two, PCB/ImSn (immersion tin) and PCB/ENiG (electroless nickel immersion gold) have been chosen in order to study the solder joint stability. Solder joints on different surface finishes are exposed to high temperature storage (HTS) at 175°C for 1000 h in order to investigate the micromechanical properties changes. Nanoindentation test provides localized micromechanical properties. The hardness changes of SAC 0307 solder joint after HTS is 66 MPa for PCB/Cu, 107 MPa for PCB/ImSn and 45 MPa for PCB/ENiG. PCB/ENiG has shown the minimum changes of micromechanical properties compared to PCB/Cu and PCB/ImSn. The show that PCB/ENiG provides the high stability of micromechanical properties after subjected to HTS at 175°C for 1000 h.

 

Keywords: Material Sn-Ag-Cu; micromechanical properties; nanoindentation; solder; solder joint surface finishes

REFERENCES

An, T. & Qin, F. 2014. Effects of the intermetallic compound microstructure on the tensile behavior of Sn3.0Ag0.5Cu/ Cu solder joint under various strain rates. Microelectronics Reliability 54: 932-938.

Bakar, M.A., Jalar, A., Daud, A.R., Ismail, R., Lah, N.C.A. & Ibrahim, N.S. 2016. Nanoindentation approach on investigating micromechanical properties of joining from green solder materials. Sains Malaysiana45(8): 1275-1279.

Chavali, S., Singh, Y., Subbarayan, G., Bansal, A. & Ahmad, M. 2013. Effect of pad surface finish and reflow cooling rate on the microstructure and the mechanical behavior of SnAgCu solder alloys. Microelectronics Reliability 53: 892-898.

Choubey, A., Yu, H., Osterman, M., Pecht, M., Yun, F., Hong, L.Y. & Ming, X. 2008. Intermetallics characterization of lead-free solder joints under isothermal aging. Journal of Electronic Materials 37(8): 1130-1138.

Ding, K.K., Li, X.G., Xiao, K., Dong, C.F., Zhang, K. & Zhao, R.T. 2015. Electrochemical migration behavior and mechanism of PCB-ImAg and PCB-HASL under adsorbed thin liquid films. Transactions of Nonferrous Metals Society of China 25: 2446-2457.

Giuranno, D., Delsante, S., Borzone, G. & Novakovic, R. 2016. Effects of Sb addition on the properties of Sn-Ag-Cu/(Cu, Ni) solder systems. Journal of Alloys and Compounds 689: 913-930.

Goncalves, C., Leitao, H., Lau, C.S., Teixeira, J.C., Ribas, L., Teixeira, S., Cerqueira, M.F., Macedo, F. & Soares, D. 2015. Wetting behaviour of SAC305 solder on different substrates in high vacuum and inert atmosphere. Journal of Materials Science: Materials in Electronics 26(7): 5106-5112.

JEDEC Standard JESD22-A103C. 2009. High Temperature Storage Life. USA: JEDEC Solid State Technology Association.

Ju, S.P., Wang, C.T., Chien, C.H., Huang, J.C. & Jian, S.R. 2007. The nanoindentation responses of nickel surfaces with different crystal orientations. Molecular Simulation 33(11): 905-917.

Kotadia, H.R., Howes, P.D. & Mannan, S.H. 2014. A review: On the development of low melting temperature Pb-free solders. Microelectronics Reliability 54(6-7): 1253-1273.

Liu, B., Tian, Y., Liu, W., Wu, W.W. & Wang, C. 2016. TEM observation of interfacial compounds of SnAgCu/ENIG solder bump after laser soldering and subsequent hot air reflows. Materials Letters 163: 254-257.

Myung, W.R., Kim, Y., Kim, K.Y. & Jung, S.B. 2016. Drop reliability of epoxy-contained Sn-58 wt.% Bi solder joint with ENIG and ENEPIG surface finish under temperature and humidity test. Journal of Electronic Materials 45(7): 3651-3658.

Pang, J.H.L. & Xiong, B.S. 2005. Mechanical properties for 95.5Sn-3.8Ag-0.7Cu lead-free solder alloy. IEEE Transactions on Components and Packaging Technologies 28(4): 830-840.

Pharr, G.M. 2015. Recent advances in small-scale mechanical property measurement by nanoindentation. Current Opinion in Solid State and Materials Science 19: 315-316.

Santos, W.L.R., Brito, C., Bertelli, F., Spimelli, J.E. & Garcia, A. 2015. Microstructural development of hypoeutectic Zn-(10- 40) wt% Sn solder alloys and impacts of interphase spacing and macrosegregation pattern on hardness. Journal of Alloys and Compounds 647: 989-996.

Useinov, A.S., Kravchuk, K.S., Rusakov, A.A., Krasnogorov, I.V., Kuznetsov, A.P. & Kazieva, T.V. 2015. Indenter shape characterization for the nanoindentation measurement of nanostructured and other types of materials. Physics Procedia 72: 194-198.

Yahaya, M.Z., Ani, F.C., Samsudin, Z., Sahin, S., Abdullah, M.Z. & Mohamad, A.A. 2016. Hardness profiles of Sn-3.0Ag- 0.5Cu-TiO2 composite solder by nanoindentation. Materials Science & Engineering A669: 178-186.

Yusoff, W.Y.W., Ismail, R., Jalar, A., Othman, N.K. & Rahman, I.A. 2014. Microstructural evolution and micromechanical properties of gamma-irradiated Au ball bonds. Materials Characterization 93: 129-135.

Zhang, L., Xuea, S.B., Zeng, G., Gao, L.L. & Ye, H. 2012. Interface reaction between SnAgCu/SnAgCuCe solders and Cu substrate subjected to thermal cycling and isothermal aging. Journal of Alloys and Compounds 510: 38-45.

Zulkifli, M.N., Jalar, A., Abdullah, S., Rahman, I.A. & Hamid, M.A.A. 2013. Strength distribution of Au ball bond using nanoindentation approach. Materials Science and Engineering A577: 189-196.

 

 

*Corresponding author; email: azmn@ukm.edu.my

 

 

 

previous