Sains Malaysiana 47(5)(2018): 1017–1023

http://dx.doi.org/10.17576/jsm-2018-4705-18

 

Radiological Dose Assessment of Natural Radioactivity in Malaysian Tiles Using Resrad-Build Computer Code

(Penilaian Dos Sinaran Keradioaktifan Tabii dalam Jubin di Malaysia Menggunakan Kod Komputer Resrad-Build)

 

AZNAN FAZLI ISMAIL1,2,3*, SHITTU ABDULLAHI1,4, SUPIAN SAMAT1 & MUHAMAD SAMUDI YASIR1,2,3

 

1Centre of Physics and Novel Materials, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Nuclear Technology Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

3Nuclear Science Program, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

4Department of Physics, Faculty of Science, Gombe State University, P.M.B. 127 Gombe, Nigeria

 

Received: 15 September 2017/Accepted: 2 January 2018

 

ABSTRACT

This research reports the annual effective dose of dwellers based on the finding of natural radioactivity concentrations in Malaysian tiles. A total of 30 tiles samples obtained from the manufacturer or bought directly from local hardware store. Natural radioactivity was analyzed using gamma spectrometry system for 12 h counting times. The activity concentration of 226Ra, 232Th, and 40K in the analyzed samples ranged from 37.50 – 158.05 Bq kg-1, 42.22 – 80.19 Bq kg-1 and 349.46 – 750.18 Bq kg-1, respectively. The determined radium equivalent activity was below than the recommended limit of 370 Bq kg-1. The external dose received by dwellers due to natural radionuclides in tiles were projected for 1, 5, 10, 20 and 50 years through six exposure pathways using Resrad-build computer code. The results showed that the annual effective dose received by dwellers increased for the investigated timelines but still lower than the annual recommended limit of 1500 μSv. The simulation result also indicates that radon gas was the primary radiation exposure which contributes 80-94 % from the total radiation exposure to dwellers.

 

Keyword: Annual effective dose; natural radionuclides; Resrad-Build computer code; tiles

 

ABSTRAK

Kajian ini melaporkan kadar dos yang diterima oleh penghuni bangunan berdasarkan kepekatan radionuklid tabii dalam jubin di Malaysia. Sebanyak 30 sampel jubin telah diperoleh daripada pengeluar atau dibeli secara terus daripada kedai. Kepekatan aktiviti radionuklid tabii dianalisis menggunakan sistem spektrometri sinar gama dengan masa pembilangan selama 12 jam. Kepekatan aktiviti 226Ra, 232Th, dan 40K dalam sampel masing-masing berada dalam julat 37.50 - 158.05 Bq kg-1, 42.22 - 80.19 Bq kg-1 dan 349.46 - 750.18 Bq kg-1. Nilai aktiviti kesetaraan radium yang ditentukan adalah di bawah had yang disyorkan ititu 370 Bq kg-1. Dos dedahan tahunan yang diterima oleh penghuni bangunan berpunca daripada radionuklid tabii dalam jubin telah ditentukan menggunakan kod komputer Resrad-build bagi 1, 5, 10, 20 dan 50 tahun melalui enam laluan dedahan. Keputusan kajian mendapati kadar dos dedahan tahunan yang diterima oleh penghuni meningkat bagi tempoh masa yang dikaji tetapi masih rendah daripada had dos tahunan yang dicadangkan iaitu 1500 μSv. Hasil simulasi juga menunjukkan gas radon adalah sumber dedahan sinaran utama yang menyumbang 80-94% daripada jumlah dedahan sinaran kepada penghuni bangunan.

 

Kata kunci: Dos dedahan tahunan; jubin; kod komputer Resrad-build; radionuklid tabii

REFERENCES

Ahmed, N.K. 2005. Measurement of natural radioactivity in building materials in Qena City, Upper Egypt. Environmental Radioactivity 83: 91-99.

Almayahi, B.A., Tajuddin, A.A. & Jaafar, M.S. 2012. Radiation hazard indices of soil and water samples in Northern Malaysia Peninsula. Applied Radiation and Isotopes 70: 2652-2660.

Al-Zahrani, J.H. 2017. Estimation of natural radioactivity in local and imported polished granite used as building materials in Saudi Arabia. Radiation Research & Applied Science 10: 241-245.

Arafa, W. 2004. Specific activity and hazards of granite samples collected from eastern Desert of Egypt. Environmental Radioactivity 75: 315-327.

Aznan, F.I., Amran, A.M., Yasir, M.S., Redzuwan, Y. & Bahari, I. 2010. Radiological risk assessment of concrete building material in Peninsular Malaysia. Sains Malaysiana39(4): 607-613.

Beretka, J. & Matthew, P.J. 1985. Natural radioactivity of Australian building materials, industrial waste and by products. Health Physics 48: 87-95.

Majid, A.A., Aznan, F.I., Yasir, M.S., Redzuwan, Y. & Bahari, I. 2013. Radiological dose assessment of naturally occurring radioactive materials in concrete building materials. Radioanalytical Nuclear Chemistry 297: 277-284.

Muhammad, R., Saeed, Ur-R., Shahida, J. & Muhammad, I.S. 2009. Measurement and comparison of indoor radon levels in new and old buildings in the City of Muzaffarabad (Azad Kashmir) Pakistan: A pilot study. Radioisotopes 58: 749-760.

NEA-OECD. 1979. Exposure to Radiation from Natural Radioactivity in Building Materials. Paris: Report by NAE Group Expert, OECD.

Nisha, S., Jaspal, S., Chinna, E.S. & Tripathi, R.M. 2016. A study of the natural radioactivity and radon exhalation rate in some cements used in India and its radiological significance. Radiation research & Applied Science 9: 47-56.

Raghu, Y., Ravisankar, R., Chandrasekaran, A., Vijayagopal, P. & Venkatraman, B. 2017. Assessment of natural radioactivity and radiological hazard in building materials used in the Tiruvannamalai District, Tamilnadu, India, using a statistical approach. Journal of Taibah University of Science 11: 523- 533.

Righi, S. & Bruzzi, L. 2006. Natural radioactivity and radon exhalation in building materials used in Italian dwellings. Environmental Radioactivity 88: 158-170.

Senthilkumar, G., Raghu, Y., Sivakumar, S., Chandrasekaran, A., Prem Anand, D. & Ravisankar, R. 2014. Natural radioactivity measurement and evaluation of radiological hazard in some commercial flooring materials used in Thiruvannamalai Tamilnadu, India. Radiation Research & Applied Science 7: 116-122.

Trevisi, R., Risica, S., D’Alessandro, M., Paradiso, D. & Nuccetelli, C. 2012. Natural radioactivity in building materials in European Union: A database and an estimate of radiological significance. Environmental Radioactivity 105: 11-20.

Turhan, S., Arikan, I.H. & Gungor, N. 2011. Radiometric analysis of raw materials and end products in the Turkish ceramics industry. Radiation Physics and Chemistry 80: 620-625.

Thomas, G.H. 2000. Radioactivity measurement on glazed ceramic surfaces. Journal of Research of the National Institute of Standards and Technology 105: 275-283.

UNSCEAR. 2000. Exposures from Natural Radiation Sources. United Nations Scientific Committee on the Effects of Atomic Radiation. Report to General Assembly, with Annexes. United Nations, New York.

US-EPA. 1993. Carcinogenicity assessment. IRIS (Integrated risk information system), 2003. Washington DC, USA: US Environmental Protection Agency.

Xinwei, L. 2004. Radioactivity level in Chinese building ceramic tile. Radiation Protection Dosimetry 112: 323-327.

Yasir, M.S., Ab Majid, A. & Yahaya, R. 2007. Study of natural radionuclides and its radiation hazard index in Malaysian building materials. Journal of Radio analytical and Nuclear Chemistry 273: 539-541.

 

 

*Corresponding author; email: aznan@ukm.edu.my

 

 

 

 

previous