Sains Malaysiana 47(6)(2018): 1303–1310

http://dx.doi.org/10.17576/jsm-2018-4706-27

 

Tensile Properties, Biodegradability and Bioactivity of Thermoplastic Starch (TPS)/ Bioglass Composites for Bone Tissue Engineering

(Sifat Tegangan, Keterbiodegradan dan Kebioaktifan Komposit Kanji Termoplastik (TPS)/Biokaca
untuk Kejuruteraan Tisu Tulang)

 

SYED NUZUL FADZLI SYED ADAM1*, AZLIN FAZLINA OSMAN2 & ROSLINDA SHAMSUDIN1

 

1School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia

43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Center of Excellence Geopolymer and Green Technology (CEGeoGTech), School of Materials Engineering, Universiti Malaysia Perlis (UniMAP), 02600 Jejawi, Arau, Perlis Indera Kayangan,

Malaysia

Received: 3 October 2017/Accepted: 26 January 2018

 

ABSTRACT

 

Composite fabricated from the combination of biodegradable polymer and bioactive filler is beneficial for bone tissue engineering if the biomaterial can perform similar characteristics of the natural inorganic-organic structures of bone. In this study, we have investigated the thermoplastic starch (TPS)/sol-gel derived bioglass composite as new biomaterial for bone tissue engineering. The composites were produced using selected TPS/bioglass mass ratio of 100/0, 95/5, 90/10, 85/15 and 80/20 by a combination of solvent casting and salt leaching techniques. Tensile test results showed the addition of bioglass increased the tensile strength and Young's modulus, but reduced the elongation at break of the samples. The modulus of all samples were higher than the requirement for cancellous bone (10-20 MPa). The SEM imaging showed the presence of porous structure on the surface of all samples. XRD results confirmed the formation of hydroxycarbonate apatite (HCA) layer on the surface of bioglass containing samples; indicating the occurrence of surface reactions when the samples were immersed in Simulated Body Fluid (SBF). Furthermore, the presence of P-O stretch band in FTIR spectrum between 1000 and 1150 cm-1 and Si-O-Si stretch band at 1000 cm-1 also proved the bioactivity of TPS/bioglass composite. The in vitro biodegradability analysis shows the biodegradability of TPS/bioglass composite decreases with increasing mass ratio of the bioglass.

 

Keywords: Bioactivity; biodegradability; bioglass; polymer composite; thermoplastic starch

 

ABSTRAK

Komposit yang difabrikasikan daripada gabungan polimer terbiodegradasi dan pengisi bioaktif adalah berfaedah untuk kejuruteraan tisu tulang jika bahan bio tersebut boleh menghasilkan ciri-ciri yang serupa dengan struktur inorganik-organik semula jadi tulang. Di dalam kajian ini, kami mengkaji komposit kanji termoplastik (TPS)/biokaca berasaskan sol-gel sebagai bahan bio baharu untuk kejuruteraan tisu tulang. Komposit tersebut dihasilkan mengikut nisbah berat yang terpilih iaitu 100/0, 95/5, 90/10, 85/15 dan 80/20 dengan menggunakan gabungan teknik penuangan pelarut dan larut lesap garam. Keputusan ujian tegangan mendedahkan penambahan biokaca dalam matriks TPS telah meningkatkan kekuatan tegangan dan modulus Young di samping merendahkan pemanjangan takat putus sampel. Modulus semua sampel adalah lebih tinggi daripada nilai diperlukan tulang berongga. Pengimejan SEM mendedahkan kewujudan struktur berliang di permukaan semua sampel. Keputusan XRD mengesahkan pembentukan lapisan hidroksikarbonat apatit (HCA) pada permukaan sampel mengandungi biokaca, menunjukkan berlakunya reaksi permukaan apabila sampel direndam dalam cecair badan simulasi (SBF). Tambahan pula, spektrum FTIR menunjukkan kehadiran jalur regangan P-O antara 1000 dan 1150 cm-1 dan jalur regangan Si-O-Si pada 1000 cm-1, juga membuktikan sifat bioaktif komposit TPS/ biokaca. Analisis keterbiodegradasian in vitro pada komposit menunjukkan keterbiodegradasian komposit TPS/biokaca berkurangan dengan peningkatan nisbah berat biokaca.

 

Kata kunci: Biokaca; kanji termoplastik (TPS); bioaktiviti; keterbiodegradan; komposit polimer

REFERENCES

Allo, B.A., Costa, D.O., Dixon, S.J., Mequanint, K. & Rizkalla, A.S. 2012. Bioactive and biodegradable nanocomposites and hybrid biomaterials for bone regeneration. Journal of Functional Biomaterials 3(4): 432–463.

Arjmandi, R., Hassan, A., Majeed, K. & Zakaria, Z. 2015. Rice husk filled polymer composites. International Journal of Polymer Science 2015. Article ID. 501471.

Bao, C.L.M., Teo, E.Y., Chong, M.S.K., Liu, Y., Choolani, M. & Chan, J.K.Y. 2013. Advances in bone tissue engineering. In Regenerative Medicine and Tissue Engineering (Book Chapter), edited by Andrades, J.A. www.intechopen.com. pp. 599-614.

Black, C.R.M., Goriainov, V., Gibbs, D., Kanczler, J., Tare, R.S. & Oreffo, R.O.C. 2015. Bone tissue engineering. Current Molecular Biology Reports 3: 132-140.

Borges, J.A., Romani, V.P., Cortez-Vega, W.R. & Martins, V.G. 2015. Influence of different starch sources and plasticizers on properties of biodegradable films. International Food Research Journal 22(6): 2346-2351.

Burg, K.J., Porter, S. & Kellam, J.F. 2000. Biomaterial developments for bone tissue engineering. Biomaterials 21(23): 2347-2359.

Cancedda, R., Giannoni, P. & Mastrogiacomo, M. 2007. A tissue engineering approach to bone repair in large animal models and in clinical practice. Biomaterials 28(29): 4240-4250.

Dai, H., Chang, P.R., Yu, J. & Ma, X. 2008. N,N-Bis(2- hydroxyethyl)formamide as a new plasticizer for thermoplastic starch. Starch 60(12): 676-684.

Fadzli, S.A.S.N., Roslinda, S., Zainuddin, F. & Ismail, H. 2016. Synthesis of sol-gel derived glass powder and in vitro bioactivity property tested in simulated body fluid. AIP Conference Proceedings 1784 Art. No: 040033.

Félix, A., Almeida, E. De, Cristina, E. & Ortega, A. 2011. Synthesis of chitosan/hydroxyapatite membranes coated with hydroxycarbonate apatite for guided tissue regeneration purposes. Applied Surface Science 257: 3888-3892.

Fu, Q., Saiz, E., Rahaman, M.N. & Tomsia, A.P. 2011. Bioactive glass scaffolds for bone tissue engineering: State of the art and future perspectives. Materials Science & Engineering C 31(7): 1245-1256.

Hench, L.L. & Wilson, J. 2013. An Introduction to Bioceramics. 2nd ed. London: Imperial College Press.

Hutmacher, D.W. 2001. Scaffold design and fabrication technologies for engineering tissues - state of the art and future perspectives. Journal of Biomaterials Science, Polymer Edition 12(1): 107-124.

Jahan, K. & Tabrizian, M. 2016. Composite biopolymers for bone regeneration enhancement in bony defects. Biomaterial Science 4(1): 25-39.

Jones, J.R., Lin, S., Yue, S., Lee, P.D., Hanna, J.V., Smith, M.E. & Newport, R.J. 2010. Bioactive glass scaffolds for bone regeneration and their hierarchical characterisation. Proceeding Inst. Mech. Eng. H. 224: 1373-1387.

Kokubo, T. & Hiroaki Takadama, H. 2006. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27: 2907-2915.

Laurencin, C., Khan, Y., Kofron, M., Al-Amin, S., Botchwey, E., Yu, X. & Cooper, J.J. 2006. The ABJS Nicolas Andry Award: Tissue engineering of bone and ligament: A 15-year perspective. Clinical Orthopaedics and Related Research 447: 221-236.

Martins, A.M., Alves, C.M., Kasper, F.K., Mikos, A.G. & Reis, R.L. 2010. Responsive and in situ-forming chitosan scaffolds for bone tissue engineering applications: An overview of the last decade. Journal of Materials Chemistry 20: 1638-1645.

Mehrali, M., Moghaddam, E. & Seyed Shirazi, S.F. 2014. Mechanical and in vitro biological performance of graphene nanoplatelets reinforced calcium silicate composite. PLOS ONE 9(9): e106802.

Ramazan, K. & Joseph Irudayaraj, K.S. 2002. Characterization of irradiated starches by using ft-Raman and FTIR spectroscopy. Agriculture and Food Chemistry 50: 3912-3918.

Rezwan, K., Chen, Q.Z., Blaker, J.J. & Roberto, A. 2006. Biodegradable and bioactive porous polymer / inorganic composite scaffolds for bone tissue engineering. Biomaterials 27: 3413–3431.

Shi, R., Ding, T., Liu, Q. & Han, Y. 2006. In vitro degradation and swelling behaviour of rubbery thermoplastic starch in simulated body and simulated saliva fluid and effects of the degradation products on cells. 91. Polymer Degradation and Stability 91(12): 3289-3300.

Xu, J., Liu, L. & De, Z.X. 2015. Promoting bone-like apatite formation on titanium alloys through nanocrystalline tantalum nitride coatings. Journal of Materials Chemistry B 3: 4082-4094.

Zeng, H. & Lace, W.R. 2000. XPS, EDX and FTIR analysis of pulsed laser deposited calcium phosphate bioceramic coatings: The effects of various process parameters. Biomaterial 21: 23-30.

 

*Corresponding author: syed.nuzul@unimap.edu.my

 

 

 

 

previous