Sains Malaysiana 47(8)(2018): 1701–1708

http://dx.doi.org/10.17576/jsm-2018-4708-09

 

Pembinaan Penanda Molekul bagi Kultur Tisu Kelapa Sawit Prolifik

(Construction of Molecule Markers for Prolific Oil Palm Tissue Culture)

 

SITI KHADIJAH A. KARIM1* & NIK MARZUKI SIDIK2

 

1Fakulti Sains Gunaan, Universiti Teknologi MARA (UiTM) Jengka, 26400 Bandar Tun Razak, Jengka, Pahang Darul Makmur, Malaysia

 

2Fakulti Industri Asas Tani, Universiti Malaysia Kelantan Kampus Jeli, 17600 Jeli, Kelantan

Darul Naim, Malaysia

 

Received: 16 October 2017/Accepted: 26 April 2018

 

ABSTRAK

Penggunaan penanda DNA boleh mengurangkan masalah dalam kultur tisu khususnya apabila diaplikasikan semasa pemilihan pokok untuk kultur tisu. Oleh itu, penyelidikan ini dijalankan bertujuan untuk membina penanda molekul bagi kultur tisu kelapa sawit prolifik dengan menggunakan teknik polimorfisme panjang cebisan teramplifikasi (AFLP). Analisis AFLP dijalankan ke atas 20 klon kelapa sawit yang terbahagi kepada tiga kelas iaitu klon tidak prolifik (10 jenis klon), klon normal (6 jenis klon) dan klon prolifik (4 jenis klon). Kesemua klon yang digunakan adalah daripada titisan sel yang berbeza. Sebanyak 25 kombinasi pencetus telah digunakan dalam analisis AFLP dan 13 daripada mereka memberikan corak amplifikasi polimorfisme. Daripada hasil ini, sebanyak 44 cebisan polimorfik telah dipencilkan dengan 33 cebisan adalah bagi klon tidak prolifik, 1 cebisan bagi normal dan 10 cebisan bagi klon prolifik. Cebisan ini telah diklon ke dalam plasmid, berjujukan dan seterusnya, analisis jujukan dijalankan. Sebanyak 36 cebisan polimorfik telah digunakan bagi kajian seterusnya. Berdasarkan kepada jujukan yang diperoleh, sepasang pencetus yang khusus kepada setiap cebisan telah dijana. Jangkaan julat saiz jalur DNA yang diamplifikasi bagi setiap pencetus adalah antara 70 hingga 500 bp. Pasangan pencetus yang optimum diuji ke atas 20 jenis klon kelapa sawit untuk mengesahkan penanda yang telah dibina. Daripada 36 pasangan pencetus yang dibina, 2 pasang pencetus telah menunjukkan potensi untuk digunakan sebagai penanda kepada kultur tisu kelapa sawit prolifik.

 

Kata kunci: AFLP; kelapa sawit; kultur tisu; penanda DNA

 

ABSTRACT

The use of DNA marker could minimize problems in tissue culture especially when applied during the selection of plants for tissue culture. Therefore, the aimed of this research was to develop molecular markers for prolific oil palm tissue culture using amplified fragment length polymorphism (AFLP) technique. AFLP analysis was carried out upon 20 oil palm clones that have divided into three classes which are non-prolific clone (10 types of clone), normal clone (6 types of clone) and prolific clone (4 types of clone). All of the clones used were from different cell line. There were 25 primer combinations used in the AFLP analysis and 13 out of them have produced significant polymorphic amplification patterns. From these results, 44 polymorphic DNA fragments were isolated where 33 fragments for non-prolific clone, one fragment for normal clone and 10 fragments for prolific clone. These fragments were cloned into plasmid, sequenced and then sequence analysis was done. There were 36 polymorphic fragments have undergone the subsequent experiments. A pair of specific primers for each fragment was designed based on their sequences. The expected size of amplified DNA bands for each primer pair was between 70 bp to 500 bp. The optimized primer pairs were tested to the 20 types of oil palm clones in order to confirm the markers developed. From the 36 designated primers combinations, 2 pairs of the primers showed the potential to be used as marker for prolific oil palm tissue culture.

 

Keywords: AFLP; DNA marker; palm oil; tissue culture

 

REFERENCES

 

Breure, K. 2003. The search for yield in oil palm: Basic principles in ‘The oil palm management for large and sustainable yields'. Potash Institute of Canada and International Potash Institute. pp. 59-98.

Corley, R.H.V. & Tinker, P.B. 2003. The Oil Palm. Oxford: Blackwell Science.

Costa, R., Pereira, G., Garrido, I., Tavares-de-Sousa, M.M. & Espinosa, F. 2016. Comparison of RAPD, ISSR, and AFLP molecular markers to reveal and classify orchardgrass (Dactylis glomerata L.) germplasm variations. PloS One 11(4): e0152972.

Hoffmann, M.P., Donough, C.R., Cook, S.E., Myles, J.F., Lim, C.H., Lim, Y.L. & Cock, J. 2017. Yield gap analysis in oil palm: Framework development and application in commercial operations in Southeast Asia. Agricultural Systems 151: 12-19.

Hossain, A.B.M.S., Imdadul, H., Mohammed, S.A., Nasir, A.I. & Kamaludin, R. 2017. Callus cell proliferation and explants regeneration using broccoli shoot tip in vitro culture. Biochemical and antioxidant properties. British Journal of Applied Science & Technology 13: 1-8.

Ikeuchi, M., Yoichi, O., Akira, I. & Keiko, S. 2016. Plant regeneration: Cellular origins and molecular mechanisms. Development 143(9): 1442-1451.

Jouannic, S., Argout, X., Lechauve, F., Fizames, C., Borgel, A., Morcillo, F., Aberlenc-Bertossi, F., Duval, Y. & Tregear, J. 2005. Analysis of expressed sequence tags from oil palm (Elaies guineensis). FEBS Letters 579: 2709-2714.

Karam M.S. Ali, Ali M. Sabbour, Mohamed K. Khalil, Abdel- Halim S. Aly & Amal F.M. Zein El Din. 2017. In vitro morphogenesis of direct organs in date palm (Phoenix dactylifera L.) Siwy cv. International Journal of Advances in Agricultural Science and Technology 4(2): 01-12.

Low, E.T.L., Tan, J.S., Chan, P.L., Boon, S.H., Wong, Y.L., Rozana, R., Ooi, L.C.L., Ma, L.S., Ong-Abdullah, M., Cheah, S.C. & Rajinder, S.I.N.G.H. 2006. Developments toward the application of DNA chip technology in oil palm tissue culture. Journal of Oil Palm Research 18(Special Issue): 87-98.

Makowska, K., Marta, K., Sylwia, O., Janusz, Z., Andrzej, C. & Robert, K. 2017. Arabinogalactan proteins improve plant regeneration in barley (Hordeum vulgare L.) anther culture. Plant Cell, Tissue and Organ Culture (PCTOC) 131(2): 247-257.

Meudt, H.M. & Clarke, A.C. 2007. Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends in Plant Sciences 12(3): 106-117.

Murphy, D.J. 2017. Recent scientific developments in genetic technologies: Implications for future regulation of GMOs in developing countries. Genetically Modified Organisms in Developing Countries. p. 13.

Orton, T.J. 1980. Chromosome viability in tissue cultures and regenerated plants of Horedum. Theor. Appl. Genet 56: 101-112.

Rajanaidu, N. & Jalani, B.S. 1995. World-wide performance of DXP planting materials and future prospects. In Proc. 1995 PORIM National Oil Palm Conf.-Tech. pp. 1-29.

Reinert, J. & Backs, D. 1968. Control of totipotency in plant cells growing in vitro. Nature 220: 1340-1341.

Rice, T.B., Reid, R.K. & Gordon, P.N. 1979. Morphogenesis in Field Crops. New York: Hughes Publications.

Roberts, J., Siew, E.O., Ahmad, T.H., Zamzuri, I., Samsul, K.R., Wei, C.W., Chin, N.C., Sau, Y.K., Nuraziyan, A. & Norashikin, S. 2017. Clonal propagation. Dlm. Oil Palm Breeding: Genetics and Genomics. Florida: CRC Press.

Sharp, W.R., Sondhal, M.R., Caldas, L.S. & Maraffa, S.B. 1980. The physiology of in vitro asexual embryogenesis. Horticult. Rev. 2: 47-54.

Tan, Y.C., Ho, W.Y., Alitheen, N.B., Wong, M.Y. & Ho, C.L. 2016. Cloning and expression of oil palm (Elaeis guineensis Jacq.) Type 2 ribosome inactivating protein in Escherichia coli. International Journal of Peptide Research and Therapeutics 22(1): 37-44.

Woittiez, L.S., Mark, T.W., Maja, S., Meine, N. & Ken, E.G. 2017. Yield gaps in oil palm: A quantitative review of contributing factors. European Journal of Agronomy 83: 57-77.

 

 

*Corresponding author; email: khadijahkarim@pahang.uitm.edu.my

 

 

 

 

previous