Sains Malaysiana 47(8)(2018): 1709–1723

http://dx.doi.org/10.17576/jsm-2018-4708-10

 

Cloning and Analysis of the Eg4CL1 Gene and Its Promoter from Oil Palm (Elaeis guineensis Jacq.)

(Pengklonan dan Analisis Gen Eg4CL1 dan Promoternya daripada Kelapa Sawit (Elaeis guineensis Jacq.))

 

YUSUF CHONG YU LOK1,2, IDRIS ABU SEMAN3, NOR AINI AB SHUKOR4,5, MOHD NORFAIZULL MOHD NOR6 & MOHD PUAD ABDULLAH6*

 

1Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA, Kampus Jasin, 77300 Merlimau, Melaka, Malaysia

 

2Agricultural Biotechnology Research Group, Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia

 

3Malaysian Palm Oil Board (MPOB), No 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Darul Ehsan, Malaysia

 

4Department of Forest Management, Faculty of Forestry, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

5Institute of Tropical Forestry and Forest Product, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

6Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences,  Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

Received: 9 September 2016/Accepted: 26 April 2018

 

ABSTRACT

The empty fruit bunches of oil palm have been used as the raw material to produce biofuel. However, the lignin present in oil palm tissues hampers the enzymatic saccharification of lignocellulosic biomass and lower the yield of biofuel produced. Hence, various efforts were taken to identify the lignin biosynthetic genes in oil palm and to investigate their regulation at the molecular level. In this study, a lignin biosynthetic gene, Eg4CL1 and its promoter were isolated from the oil palm. Eg4CL1 contains the acyl-activating enzyme consensus motif and boxes I & II which are present in other 4CL homologs. Eg4CL1 was clustered together with known type I 4CL proteins involved in lignin biosynthesis in other plants. Gene expression analysis showed that Eg4CL1 was expressed abundantly in different organs of oil palm throughout the course of development, reflecting its involvement in lignin biosynthesis in different organs at all stages of growth. The presence of the lignification toolbox - AC elements in the 1.5 kb promoter of Eg4CL1 further suggests the potential role of the gene in lignin biosynthesis in oil palm. Together, these results suggested that Eg4CL1 is a potential candidate gene involved in lignin biosynthesis in oil palm.

 

Keywords: Biofuel; lignin; oil palm; promoter; 4CL

 

ABSTRAK

Tandan kosong buah kelapa sawit telah digunakan sebagai bahan asas untuk menghasilkan biofuel. Walau bagaimanapun, lignin yang terdapat dalam tisu kelapa sawit menghalang proses sakarifikasi enzimatik biojisim lignoselulosa dan mengurangkan hasil bahan api biologi yang dihasilkan. Oleh itu, pelbagai usaha telah diambil untuk mengenal pasti gen biosintesis lignin dalam kelapa sawit dan untuk mengkaji pengawalaturannya pada peringkat molekul. Dalam kajian ini, gen biosintesis lignin, Eg4CL1 dan promoternya telah dipencilkan daripada kelapa sawit. Eg4CL1 mengandungi motif konsensus enzim pengaktifan asil dan kotak I & II yang terdapat dalam homolog 4CL yang lain. Eg4CL1 berkelompok bersama dengan protein 4CL yang diketahui terlibat dalam biosintesis lignin dalam tumbuhan lain. Analisis pengekspresan gen menunjukkan bahawa Eg4CL1 diekspres dengan banyak dalam organ kelapa sawit yang berbeza pada semua peringkat pertumbuhan, mencerminkan penglibatannya dalam biosintesis lignin dalam organ yang berbeza pada semua peringkat pertumbuhan. Kehadiran peti alat lignifikasi - unsur AC dalam promoter Eg4CL1 1.5 kb selanjutnya menyokong potensi gen ini yang berperanan dalam biosintesis lignin pada pokok kelapa sawit. Secara keseluruhannya, keputusan kajian ini mencadangkan Eg4CL1 sebagai calon gen yang berpotensi terlibat dalam biosintesis lignin pada pokok kelapa sawit.

 

Kata kunci: Biofuel; kelapa sawit; lignin; promoter; 4CL

REFERENCES

Bahariah, B., Parveez, G.K.A., Masani, M.Y.A., Masura, S.S., Khalid, N. & Othman, R.Y. 2013. Biolistic transformation of oil palm using the phosphomannose isomerase (pmi) gene as a positive selectable marker. Biocatalysis and Agricultural Biotechnology 2: 295-304.

Baumann, K., De Paolis, A., Costantino, P. & Gualberti, G. 1999. The DNA binding site of the dof protein NtBBF1 is essential for tissue-specific and auxin-regulated expression of the rolb oncogene in plants. The Plant Cell 11: 323-334.

Carroll, B.J., Klimyuk, V.I., Thomas, C.M., Bishop, G.J., Harrison, K., Scofield, S.R. & Jones, J.D. 1995. Germinal transpositions of the maize element dissociation from T-DNA loci in tomato. Genetics 139: 407-420.

Chao, N., Liu, S.X., Liu, B.M., Li, N., Jiang, X.N. & Gai, Y. 2014. Molecular cloning and functional analysis of nine cinnamyl alcohol dehydrogenase family members in Populus tomentosa. Planta 240: 1097-1112.

Chapple, C., Ladisch, M. & Meilan, R. 2007. Loosening lignin's grip on biofuel production. Nature Biotechnology 25: 746- 748.

Chen, F. & Dixon, R.A. 2007. Lignin modification improves fermentable sugar yields for biofuel production. Nature Biotechnology 25: 759-761.

Ehlting, J., Büttner, D., Wang, Q., Douglas, C.J., Somssich, I.E. & Kombrink, E. 1999. Three 4-Coumarate: Coenzyme A ligases in Arabidopsis thaliana represent two evolutionarily divergent classes in angiosperms. Plant Journal 19: 9-20.

Filichkin, S.A., Leonard, J.M., Monteros, A., Liu, P.P. & Nonogaki, H. 2004. A novel endo-beta-mannanase gene in tomato LeMAN5 is associated with anther and pollen development. Plant Physiology 134: 1080-1087.

Fu, C., Xiao, X., Xi, Y., Ge, Y., Chen, F., Bouton, J., Dixon, R.A. & Wang, Z.Y. 2011. Downregulation of cinnamyl alcohol dehydrogenase (CAD) leads to improved saccharification efficiency in switchgrass. Bioenergy Research 4: 153-164.

Gao, D., Haarmeyer, C., Balan, V., Whitehead, T.A., Dale, B.E. & Chundawat, S.P. 2014. Lignin triggers irreversible cellulase loss during pretreated lignocellulosic biomass saccharification. Biotechnology for Biofuels 7: 175.

Gao, S., Yu, H.N., Xu, R.X., Cheng, A.X. & Lou, H.X. 2015. Cloning and functional characterization of a 4-coumarate COA ligase from liverwort Plagiochasma appendiculatum. Phytochemistry 111: 48-58.

Goda, H., Sawa, S., Asami, T., Fujioka, S., Shimada, Y. & Yoshida, S. 2004. Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis. Plant Physiology 134: 1555-1573.

Goebels, C., Thonn, A., Gonzalez-Hilarion, S., Rolland, O., Moyrand, F., Beilharz, T.H. & Janbon, G. 2013. Introns regulate gene expression in Cryptococcus neoformans in a Pab2p dependent pathway. PLoS Genetics 9(8): e1003686.

Grierson, C., Du, J.S., Zabala, M., Beggs, K., Smith, C., Holdsworth, M. & Bevan, M. 1994. Separate cis sequences and trans factors direct metabolic and developmental regulation of a potato tuber storage protein gene. Plant Journal 5: 815-826.

Gui, J., Shen, J. & Li, L. 2011. Functional characterization of evolutionarily divergent 4-coumarate: Coenzyme A ligases in rice. Plant Physiology 157: 574-586.

Hall, T.A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/ NT. Nucleic Acids Symposium Series 41: 95-98.

Hamberger, B., Ellis, M., Friedmann, M., de Azevedo Souza, C., Barbazuk, B. & Douglas, C.J. 2007. Genome-wide analyses of phenylpropanoid-related genes in Populus trichocarpa, Arabidopsis thaliana, and Oryza sativa: The populus lignin toolbox and conservation and diversification of angiosperm gene families. Canadian Journal of Botany 85: 1182-1201.

Hamberger, B. & Hahlbrock, K. 2004. The 4-coumarate: CoA ligase gene family in Arabidopsis thaliana comprises one rare, sinapate-activating and three commonly occurring isoenzymes. Proceedings of the National Academy of Sciences of the United States of America 101: 2209-2214.

Hatton, D., Sablowski, R., Yung, M.H., Smith, C., Schuch, W. & Bevan, M. 1995. Two classes of cis sequences contribute to tissue-specific expression of a pal2 promoter in transgenic tobacco. The Plant Journal 7: 859-876.

Heath, R., McInnes, R., Lidgett, A., Huxley, H., Lynch, D., Jones, E., Mahoney, N. & Spangenberg, G. 2002. Isolation and characterisation of three 4-coumarate: Coa-ligase homologue cdnas from Perennial Ryegrass (Lolium perenne). Journal of Plant Physiology 159: 773-779.

Hirano, K., Kondo, M., Aya, K., Miyao, A., Sato, Y., Antonio, B.A., Namiki, N., Nagamura, Y. & Matsuoka, M. 2013. Identification of transcription factors involved in rice secondary cell wall formation. Plant and Cell Physiology 54: 1791-1802.

Hu, W.J., Kawaoka, A., Tsai, C.J., Lung, J., Osakabe, K., Ebinuma, H. & Chiang, V.L. 1998. Compartmentalized expression of two structurally and functionally distinct 4-coumarate: CoA ligase genes in Aspen (Populus tremuloides). Proceedings of the National Academy of Sciences of the United States of America 95: 5407-5412.

Hu, Y., Gai, Y., Yin, L., Wang, X., Feng, C., Feng, L., Li, D., Jiang, X.N. & Wang, D.C. 2010. Crystal structures of a populus tomentosa 4-coumarate: CoA ligase shed light on its enzymatic mechanisms. The Plant Cell 22: 3093-3104.

Huang, J., Gu, M., Lai, Z., Fan, B., Shi, K., Zhou, Y.H., Yu, J.Q. & Chen, Z. 2010. Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiology 153: 1526-1538.

Ibrahim, M.F., Abd-Aziz, S., Yusoff, M.E.M., Phang, L.Y. & Hassan, M.A. 2015. Simultaneous enzymatic saccharification and ABE fermentation using pretreated oil palm empty fruit bunch as substrate to produce butanol and hydrogen as biofuel. Renewable Energy 77: 447-455.

Jung, J.H., Vermerris, W., Gallo, M., Fedenko, J.R., Erickson, J.E. & Altpeter, F. 2013. RNA interference suppression of lignin biosynthesis increases fermentable sugar yields for biofuel production from field-grown sugarcane. Plant Biotechnology Journal 11: 709-716.

Kumar, A. & Ellis, B.E. 2003. 4-Coumarate: CoA ligase gene family in Rubus idaeus: cDNA structures, evolution, and expression. Plant Molecular Biology 51: 327-340.

Kizis, D. & Pagès, M. 2002. Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway. The Plant Journal 30: 679-689.

Kropat, J., Tottey, S., Birkenbihl, R.P., Depege, N., Huijser, P. & Merchant, S. 2005. A regulator of nutritional copper signaling in chlamydomonas is an SBP domain protein that recognizes the GTAC core of copper response element. Proceedings of the National Academy of Sciences of the United States of America 102: 18730-18735.

Lee, D., Ellard, M., Wanner, L.A., Davis, K.R. & Douglas, C.J. 1995. The Arabidopsis thaliana 4-coumarate: CoA ligase (4CL) gene: Stress and developmentally regulated expression and nucleotide sequence of its cDNA. Plant Molecular Biology 28: 871-884.

Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., Rouzé, P. & Rombauts, S. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research 30: 325-327.

Li, Y., Im Kim, J., Pysh, L. & Chapple, C. 2015. Four isoforms of Arabidopsis thaliana 4-coumarate: CoA ligase (4CL) have overlapping yet distinct roles in phenylpropanoid metabolism. Plant Physiology 169: 2409-2421.

Li, Z.B., Li, C.F., Li, J. & Zhang, Y.S. 2014. Molecular cloning and functional characterization of two divergent 4-coumarate: coenzyme A ligases from Kudzu (Pueraria lobata). Biological & Pharmaceutical Bulletin 37: 113-122.

Marchler-Bauer, A., Lu, S., Anderson, J.B., Chitsaz, F., Derbyshire, M.K., DeWeese-Scott, C., Fong, J.H., Geer, L.Y., Geer, R.C., Gonzales, N.R. & Gwadz, M. 2010. CDD: A conserved domain database for the functional annotation of proteins. Nucleic Acids Research 39: 225-229.

Masani, M.Y.A., Noll, G.A., Parveez, G.K.A., Sambanthamurthi, R. & Prüfer, D. 2014. Efficient transformation of oil palm protoplasts by peg-mediated transfection and DNA microinjection. PloS One doi. 10.1371/journal.pone.0096831.

Mena, M., Cejudo, F.J., Isabel-Lamoneda, I. & Carbonero, P. 2002. A role for the DOF transcription factor BPBF in the regulation of gibberellin-responsive genes in Barley Aleurone. Plant Physiology 130: 111-119.

Nagaya, S., Kawamura, K., Shinmyo, A. & Kato, K. 2009. The HSP terminator of Arabidopsis thaliana increases gene expression in plant cells. Plant and Cell Physiology 51: 328-332.

Neutelings, G. 2011. Lignin variability in plant cell walls: Contribution of new models. Plant Science 181: 379-386.

Nordin, K., Vahala, T. & Palva, E.T. 1993. Differential expression of two related, low-temperature-induced genes in Arabidopsis thaliana (L.) Heynh. Plant Molecular Biology 21: 641-653.

Ochman, H., Gerber, A.S. & Hartl, D.L. 1988. Genetic applications of an inverse polymerase chain reaction. Genetics 120: 621-623.

Park, H.C., Kim, M.L., Kang, Y.H., Jeon, J.M., Yoo, J.H., Kim, M.C., Park, C.Y., Jeong, J.C., Moon, B.C., Lee, J.H. & Yoon, H.W. 2004. Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiology 135: 2150-2161.

Piarpuzan, D., Quintero, J.A. & Cardona, C.A. 2011. Empty fruit bunches from oil palm as a potential raw material for fuel ethanol production. Biomass and Bioenergy 35: 1130-1137.

Raes, J., Rohde, A., Christensen, J.H., Van de Peer, Y. & Boerjan, W. 2003. Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiology 133: 1051-1071.

Rao, G., Pan, X., Xu, F., Zhang, Y., Cao, S., Jiang, X. & Lu, H. 2015. Divergent and overlapping function of five 4-Coumarate/Coenzyme A ligases from Populus tomentosa. Plant Molecular Biology Reporter 33: 841-854.

Rastogi, S., Kumar, R., Chanotiya, C.S., Shanker, K., Gupta, M.M., Nagegowda, D.A. & Shasany, A.K. 2013. 4-Coumarate: CoA ligase partitions metabolites for eugenol biosynthesis. Plant and Cell Physiology 54: 1238-1252.

Rose, A., Meier, I. & Wienand, U. 1999. The tomato i-box binding factor LeMYBI is a member of a novel class of myb-like proteins. The Plant Journal 20: 641-652.

Rubio-Somoza, I., Martinez, M., Abraham, Z., Diaz, I. & Carbonero, P. 2006. Ternary complex formation between HvMYBS3 and other factors involved in transcriptional control in barley seeds. Plant Journal 47: 269-281.

Shen, H., Mazarei, M., Hisano, H., Escamilla-Trevino, L., Fu, C., Pu, Y., Rudis, M.R., Tang, Y., Xiao, X., Jackson, L. & Li, G. 2013. A genomics approach to deciphering lignin biosynthesis in switchgrass. The Plant Cell 25: 4342-4361.

Shen, H., He, X., Poovaiah, C.R., Wuddineh, W.A., Ma, J., Mann, D.G., Wang, H., Jackson, L., Tang, Y., Neal Stewart, C. & Chen, F. 2012. Functional characterization of the switchgrass (Panicum virgatum) R2R3-MYB transcription factor PvMYB4 for improvement of lignocellulosic feedstocks. New Phytologist 193: 121-136.

Silber, M.V., Meimberg, H. & Ebel, J. 2008. Identification of a 4-Coumarate: CoA ligase gene family in the moss, Physcomitrella patens Q. Phytochemistry 69: 2449-2456.

Simpson, S.D., Nakashima, K., Narusaka, Y., Seki, M., Shinozaki, K. & Yamaguchi-Shinozaki, K. 2003. Two different novel cis-acting elements of erd1, a clpA homologous arabidopsis gene function in induction by dehydration stress and dark-induced senescence. The Plant Journal 33: 259-270.

Soltani, B.M., Ehlting, J., Hamberger, B. & Douglas, C.J. 2006. Multiple Cis-regulatory elements regulate distinct and complex patterns of developmental and wound-induced expression of Arabidopsis thaliana 4CL gene family members. Planta 224: 1226-1238.

Souza, A.C., Barbazuk, B., Ralph, S.G., Bohlmann, J., Hamberger, B. & Douglas, C.J. 2008. Genome-wide analysis of a land plant-specific acyl: CoenzymeA synthetase (ACS) gene family in arabidopsis, poplar, rice and physcomitrella. New Phytologist 179: 987-1003.

Sun, H., Li, Y., Feng, S., Zou, W., Guo, K., Fan, C., Si, S. & Peng, L. 2013. Analysis of five rice 4-coumarate: Coenzyme a ligase enzyme activity and stress response for potential roles in lignin and flavonoid biosynthesis in rice. Biochemical and Biophysical Research Communications 430: 1151-1156.

Sykes, R.W., Gjersing, E.L., Foutz, K., Rottmann, W.H., Kuhn, S.A., Foster, C.E., Ziebell, A., Turner, G.B., Decker, S.R., Hinchee, M.A. & Davis, M.F. 2016. Down-regulation of p-coumaroyl quinate/shikimate 3′-hydroxylase (c3′h) and cinnamate 4-hydroxylase (c4h) genes in the lignin biosynthetic pathway of Eucalyptus urophylla × Eucalyptus grandis leads to improved sugar release. Biotechnology for Biofuels 9: 691-699.

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28: 2731-2739.

Tian, X., Xie, J., Zhao, Y., Lu, H., Liu, S., Qu, L., Li, J., Gai, Y. & Jiang, X. 2013a. Sense-, antisense- and RNAi-4CL1 regulate soluble phenolic acids, cell wall components and growth in transgenic Populus tomentosa Carr. Plant Physiology and Biochemistry 65: 111-119.

Tian, Q., Wang, X., Li, C., Lu, W., Yang, L., Jiang, Y. & Luo, K. 2013b. Functional characterization of the poplar R2R3-MYB transcription factor PtoMYB216 involved in the regulation of lignin biosynthesis during wood formation. PLoS ONE doi. 10.1371/journal.pone.0076369.

Trabucco, G.M., Matos, D.A., Lee, S.J., Saathoff, A.J., Priest, H.D., Mockler, T.C., Sarath, G. & Hazen, S.P. 2013. Functional characterization of cinnamyl alcohol dehydrogenase and caffeic acid o-methyltransferase in Brachypodium distachyon. BMC Biotechnology doi. 10.1186/1472-6750-13-61.

Van Acker, R., Leplé, J.C., Aerts, D., Storme, V., Goeminne, G., Ivens, B., Légée, F., Lapierre, C., Piens, K., Van Montagu, M.C. & Santoro, N. 2014. Improved saccharification and ethanol yield from field-grown transgenic poplar deficient in cinnamoyl-coa reductase. Proceedings of the National Academy of Sciences of the United States of America 111: 845-850.

Vanholme, R., Demedts, B., Morreel, K., Ralph, J. & Boerjan, W. 2010. Lignin biosynthesis and structure. Plant Physiology 153: 895-905.

Voelker, S.L., Lachenbruch, B., Meinzer, F.C., Jourdes, M., Ki, C., Patten, A.M., Davin, L.B., Lewis, N.G., Tuskan, G.A., Gunter, L. & Decker, S.R. 2010. Antisense down-regulation of 4CL expression alters lignification, tree growth, and saccharification potential of field-grown poplar. Plant Physiology 154: 874-886.

Wagner, A., Donaldson, L., Kim, H., Phillips, L., Flint, H., Steward, D., Torr, K., Koch, G., Schmitt, U. & Ralph, J. 2009. Suppression of 4-Coumarate-CoA ligase in the coniferous gymnosperm Pinus radiata. Plant Physiology 149: 370-383

Wang, S., Li, E., Porth, I., Chen, J.G., Mansfield, S.D. & Douglas, C.J. 2014. Regulation of secondary cell wall biosynthesis by poplar R2R3 MYB transcription factor PtrMYB152 in Arabidopsis. Scientific Reports 4: 5054.

Wang, T., Zhang, N. & Du, L. 2005. Isolation of RNA of high quality and yield from Ginkgo biloba leaves. Biotechnology Letters 27: 629-633.

Xu, B., Escamilla-Treviño, L.L., Sathitsuksanoh, N., Shen, Z., Shen, H., Percival Zhang, Y.H., Dixon, R.A. & Zhao, B. 2011. Silencing of 4-coumarate: Coenzyme a ligase in switchgrass leads to reduced lignin content and improved fermentable sugar yields for biofuel production. New Phytologist 192: 611-625.

Xu, L., Zhu, L., Tu, L., Liu, L., Yuan, D., Jin, L., Long, L. & Zhang, X. 2011. Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-seq-dependent transcriptional analysis and histochemistry. Journal of Experimental Botany 62: 5607-5621.

Xu, Q., Yin, X.R., Zeng, J.K., Ge, H., Song, M., Xu, C.J., Li, X., Ferguson, I.B. & Chen, K.S. 2014. Activator-and repressor-type MYB transcription factors are involved in chilling injury induced flesh lignification in loquat via their interactions with the phenylpropanoid pathway. Journal of Experimental Botany 65: 4349-4359.

Yan, L., Xu, C., Kang, Y., Gu, T., Wang, D., Zhao, S. & Xia, G. 2013. The heterologous expression in Arabidopsis thaliana of sorghum transcription factor SbbHLH1 downregulates lignin synthesis. Journal of Experimental Botany 64: 3021-3032.

Zhang, Z.L., Xie, Z., Zou, X., Casaretto, J., Ho, T.H.D. & Shen, Q.J. 2004. A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiology 134: 1500-1513.

Zhong, R. & Ye, Z.H. 2009. Transcriptional regulation of lignin biosynthesis. Plant Signaling & Behavior 4: 1028-1034.

 

 

*Corresponding author; email: puad@upm.edu.my

 

 

 

 

previous