Sains Malaysiana 47(9)(2018): 2055–2061

http://dx.doi.org/10.17576/jsm-2018-4709-13

 

Pengoptimuman Parameter untuk Penurunan Diimida Getah Asli Cecair dalam Sistem Hidrazin Hidrat/Hidrogen Peroksida Menggunakan Kaedah Rangsangan Permukaan (RSM)

(Parameter Optimisation for Diimide Reduction of Liquid Natural Rubber in Hydrazine Hydrate/Hydrogen Peroxide System using Response Surface Methodology (RSM))

 

MUHAMMAD JEFRI MOHD YUSOF1, NUR AIDASYAKIRAH MOHD TAHIR1, FAZIRA FIRDAUS1 & SITI FAIRUS M. YUSOFF1,2*

 

1Pusat Pengajian Sains Kimia dan Teknologi Makanan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Polymer Research Centre (PORCE), Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 27 March 2018/Accepted: 17 May 2018

 

ABSTRAK

Getah asli cecair (LNR) dihasilkan daripada proses penyahpolimeran getah asli yang menghasilkan rantaian polimer lebih pendek dan berat molekular kurang daripada 105. Namun, LNR masih mempamerkan tahap degradasi dan ketahanan termal yang rendah seperti getah asli, disebabkan oleh kehadiran ikatan karbon ganda dua pada rantaian polimer. Dalam kajian ini, penurunan diimida menggunakan pengoksidaan hidrazin hidrat dengan hidrogen peroksida dijalankan untuk menghidrogenkan unit tidak tepu LNR. LNR terhidrogen (HLNR) dicirikan menggunakan spektrometer infra-merah (FTIR) dan spektrometer resonans magnetik nuklear (NMR). Pengoptimuman parameter tindak balas dilakukan dengan memanipulasi parameter masa dan suhu tindak balas berdasarkan kaedah rangsangan permukaan (RSM) dengan 5-aras-2-faktor reka bentuk komposit putaran tengah (CCRD). Satu model kuadratik yang signifikan telah dihasilkan untuk menghubungkan dua parameter tersebut dengan nilai R2 adalah 0.9986, menunjukkan bahawa model yang terhasil adalah sangat sepadan dengan data uji kaji. Keputusan kajian menunjukkan bahawa peratus penghidrogenan boleh ditingkatkan sehingga 91.2%. Seterusnya, berdasarkan RSM, parameter yang optimum bagi penurunan diimida LNR ini didapati pada suhu 55.9oC selama 6.7 jam, menghasilkan 80.2% HLNR. Kajian ini telah menunjukkan reka bentuk uji kaji secara statistik yang novel bagi menghidrogenkan LNR. Pelbagai variasi peratus penghidrogenan produk HLNR dalam kajian ini menyumbang kepada lebih banyak aplikasi produk yang memerlukan peratusan ketepuan unit yang tertentu.

 

Kata kunci: Getah asli cecair; kaedah rangsangan permukaan (RSM); penghidrogenan; pengoptimuman; reka bentuk komposit putaran tengah (CCRD)

 

ABSTRACT

Liquid natural rubber (LNR) derives from depolimerisation of natural rubber resulting in shorter polymeric chains and lower molecular weight of less than 105. However, LNR still exhibits weak degradation and thermal resistance of natural rubber due to the presence of carbon-carbon double bonds along its backbone. In this research, diimide reduction via oxidation of hydrazine hydrate with hydrogen peroxide was used to hydrogenate LNR to saturate its chemical structure. Hydrogenated LNR (HLNR) was characterized using Fourier-transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopies. The optimization of reaction conditions was accomplished by manipulating time and temperature parameters based on response surface methodology (RSM) of 5-level-2-factor central composite rotatable design (CCRD). A significant quadratic model was generated to correlate those two parameters with R2 value of 0.9986, indicating that the model was remarkably fit with the experimental data. The results showed that hydrogenation degree of the product (HLNR) could be extended to 91.2%. Subsequently, the optimum conditions for diimide reduction of LNR were found to be at 55.9°C for 6.7 h, yielding 80.2% HLNR. This study has demonstrated the novel statistical design of experiment to hydrogenate LNR as a new starting material. The variation of hydrogenation degrees of the products has opened up more potentials for industrial and application purposes as they are composed of different percentages of saturated and saturated units.

 

Keywords: Central composite rotatable design (CCRD); hydrogenation; liquid natural rubber; optimization; response surface methodology (RSM)

REFERENCES

Alshaibani, A.M., Yaakob, Z., Alsobaai, A.M. & Sahri, M. 2014. Optimization of pd-b / γ -al 2 o 3 catalyst preparation for palm oil hydrogenation by response surface methodology (RSM) Journal of Chemical Reactor Engineering 31(1): 69-78.

Azhar, N.H.A., Jamaluddin, N., Md Rasid, H., Yusof, M., Jefri, M. & Yusoff, S.F.M. 2015. Studies on hydrogenation of liquid natural rubber using diimide. International Journal of Polymer Science 2015: 243038.

Cepeda, E.A. & Calvo, B. 2008. Sunflower oil hydrogenation: Study using response surface methodology. Journal of Food Engineering 89(4): 370-374.

Chen, D., Shao, H., Yao, W. & Huang, B. 2013. Fourier transform infrared spectral analysis of polyisoprene of a different microstructure. International Journal of Polymer Science 2013: 937284.

Chou, K.W., Norli, I. & Anees, A. 2010. Evaluation of the effect of temperature, NaOH concentration and time on solubilization of palm oil mill effluent (POME) using response surface methodology (RSM). Bioresource Technology 101(22): 8616-8622.

Fainleib, A., Pires, R.V., Lucas, E.F. & Soares, B.G. 2013. Degradation of non-vulcanized natural rubber - renewable resource for fine chemicals used in polymer synthesis. Polimeros 23: 441-450.

Han, Y., Su, L., Mao, L., Zhang, L. & Yue, D. 2014. Self-cross-linking hydrogenated nitrile-butadiene rubber latex/polyvinyl chloride emulsion composite film and its properties. Polymer- Plastics Technology and Engineering 53(3): 306-311.

Ibrahim, S., Rubber, M. & Ibrahim, S. 2016. Chemical depolymerisation of natural rubber in biphasic medium. Advanced Materials Research 1024: 193-196.

Jamaluddin, N., Mohd Yusof, M.J., Abdullah, I. & M. Yusoff, S.F. 2016. Synthesis, characterization, and properties of hydrogenated liquid natural rubber. Rubber Chemistry and Technology 89(2): 227-239.

Ji, M., Yue, D., Wu, X., Zhao, S., Sun, S. & Zhang, L. 2017. Structure and performance of hydrogenated natural rubber prepared by the latex method. Plastics, Rubber and Composites 46(6): 245-250.

Jumbri, K., Rozy, M.F.A. & Ashari, S.E. 2015. Optimisation and characterisation of lipase- catalysed synthesis of a kojic monooleate ester in a solvent-free system by response surface methodology. PloS One 10(12): 1-13.

Kargarzadeh, H., Ahmad, I. & Abdullah, I. 2014. Liquid rubbers as toughening agents. Micro and Nanostructures Epoxy/ Rubber Blends 1: 31-52.

Lee, W.C., Yusof, S., Hamid, N.S.A. & Baharin, B.S. 2006. Optimizing conditions for enzymatic clarification of banana juice using response surface methodology (RSM). Journal of Food Engineering 73(1): 55-63.

Leimgruber, S. & Trimmel, G. 2015. Olefin metathesis meets rubber chemistry and technology. Monatshefte für Chemie- Chemical Monthly 146(7): 1081-1097.

Mendes, L.C., De Menezes, H.C., Aparecida, M. & Da Silva, A.P. 2001. Optimization of the roasting of robusta coffee (C. canephora conillon) using acceptability tests and RSM. Food Quality and Preference 12(2): 153-162.

Onoji, S.E., Iyuke, S.E. & Igbafe, A.I. 2016. Hevea brasiliensis (Rubber seed) oil: Extraction, characterization, and kinetics of thermo-oxidative degradation using classical chemical methods. Energy & Fuels 30(12): 10555-10567.

Piya-areetham, P., Rempel, G.L. & Prasassarakich, P. 2014. Hydrogenated nanosized polyisoprene as a thermal and ozone stabilizer for natural rubber blends. Polymer Degradation and Stability 102: 112-121.

Radabutra, S., Saengsuwan, S., Jitchati, R. & Kalapat, M. 2017. Preparation and characterization of modified telechelic natural rubber-based pressure-sensitive adhesive. Journal of Adhesion Science and Technology 31(24): 2682-2696.

Rempel, G.L. & Wang, H. 2017. Nitrile rubber latex blends: Preparation, characterization and applications. In Rubber Nano Blends, edited by Markovic, G. & Visakh, P.M. Springer Series on Polymer and Composite Materials. Springer, Cham. pp. 67-88.

Sakorn, S., Rempel, G.L., Prasassarakich, P. & Hinchiranan, N. 2016. Poly (styrene)and poly (styrenecomethyl methacrylate)grafthydrogenated natural rubber latex: Aspect on synthesis, properties, and compatibility. Journal of Vinyl and Additive Technology 22(2): 100-109.

Salinas, M.V., Zuleta, A., Ronayne, P. & Puppo, M.C. 2016. Wheat bread enriched with organic calcium salts and inulin. A bread quality study. Journal of Food Science and Technology 53(1): 491-500.

Simma, K., Rempel, G.L. & Prasassarakich, P. 2009. Improving thermal and ozone stability of skim natural rubber by diimide reduction. Polymer Degradation and Stability 94(11): 1914- 1923.

Tahir, N.A.M., Azhar, N.H.A., Rasidi, H.M. & Yusoff, S.F.M. 2017. Penghidrogenan getah asli cecair dan getah asli cecair terepoksida menggunakan diimida. Journal of Polymer Science and Technology 2(1): 1-10.

Taksapattanakul, K., Tulyapitak, T., Phinyocheep, P., Ruamcharoen, P., Ruamcharoen, J., Lagarde, F. & Daniel, P. 2017. The effect of percent hydrogenation and vulcanization system on ozone stability of hydrogenated natural rubber vulcanizates using Raman spectroscopy. Polymer Degradation and Stability 141: 58-68.

Thitithammawong, A., Rungvichaniwat, A. & Srangkum, S. 2015. Properties of dual cured polyurethane film coatings based on natural rubber. Macromolecular Symposia 354: 354-360.

Thongnuanchan, B., Ninjan, R., Kaesaman, A. & Nakason, C. 2015. A novel method to crosslink natural rubber latex adhesive at ambient temperature. Polymer Bulletin 72(1): 135-155.

Trovatti, E., Cunha, A.G., Carvalho, A.J.F. & Gandini, A. 2017. Furan-modified natural rubber: A substrate for its reversible crosslinking and for clicking it onto nanocellulose. International Journal of Biological Macromolecules 95: 762-768.

Wu, W., Zhai, Y., Zhang, Y. & Ren, W. 2014. Mechanical and microwave absorbing properties of in situ prepared hydrogenated acrylonitrile-butadiene rubber/rare earth acrylate composites. Composites Part B: Engineering 56: 497-503.

Yuan, D., Ding, J., Mou, W., Wang, Y. & Chen, Y. 2017. Bio-based polylactide/epoxidized natural rubber thermoplastic vulcanizates with a co-continuous phase structure. Polymer Testing 64: 200-206.

Yusof, M.J.M., Abdullah, I. & Yusoff, S.F.M. 2017. Sintesis dan pencirian getah asli cecair terhidrogen untuk adunan polimer. Sains Malaysiana 46(10): 1817-1823.

Zirnstein, B., Tabaka, W., Frasca, D., Schulze, D. & Schartel, B. 2018. Graphene/hydrogenated acrylonitrile-butadiene rubber nanocomposites: Dispersion, curing, mechanical reinforcement, multifunctional filler. Polymer Testing 66: 268-279.

 

*Corresponding author; email: sitifairus@ukm.edu.my

 

 

 

 

 

 

 

previous