Sains Malaysiana 47(9)(2018): 2105–2111

http://dx.doi.org/10.17576/jsm-2018-4709-19

 

Construction of the pEGFP-N1-p53/MAR Vector and Its Effect on HEP3B Cell Morphology

(Pembinaan Vektor pEGFP-N1-p53/MAR dan Kesannya ke atas Morfologi Sel HEP3B)

 

PENG SHAN LI1, XUE QIN LEI1*, TING SHENG XU1, PAN LIN WANG1, ZHEN SONG1, ZHEN HONG LI1 & XUE MEI HAN2

 

1College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China

 

2Cancer Research, Third Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471003, China

 

Received: 28 January 2018/Accepted: 9 May 2018

 

ABSTRACT

Cancer always presents a big problem that endangers human health. In recent years, the use of gene therapy in cancer research has significantly increased. This study aimed to construct a non-viral, wild-type, recombinant eukaryotic expression vector, pEGFP-N1-p53/MAR and verify its mechanism of action in cancer cells in vitro. This investigation provides a novel strategy for p53 gene therapy via regulation of the matrix attachment region (MAR), potentially laying a foundation for the establishment of an anticancer protein bioreactor. The p53 gene was cloned from human peripheral blood and the MAR gene was amplified from chicken liver tissue. The recombinant eukaryotic expression vector pEGFP-N1-p53/MAR was constructed using an E. coli self-replication system. LipofectamineTM 2000 was used as the transfection agent to deliver the plasmid into the human hepatic carcinoma (HEP3B) cell line. We divided the groups as follows: negative control cells without plasmid transfection, vehicle control cells transfected with the PEGFP-N1 vector and experimental cells transfected with the pEGFP-N1-p53/MAR vector. Cells in each well of the vehicle control and experimental groups were transfected with 1.6 μg of plasmid and 3 μL of liposome. The cellular morphology of each group was analysed using green fluorescence microscopy at 12, 24, 36 and 48 h. Then, statistical analysis of the apoptosis rates among the three groups was performed using SPSS. The ultrastructures of the cells were observed via transmission electron microscopy after transfection for 24 h. Morphological analysis showed that the cells of the experimental group were shrunken and reduced in size and their intercellular connections had disappeared. Additionally, the apoptosis rate in the experimental group was significantly higher than that in the control groups and the cellular microstructure showed that heterochromatin and apoptotic bodies were found in the experimental group. In conclusion, compared with the control groups, the pEGFP-N1-p53/MAR plasmid can effectively promote Hep3B cell apoptosis in vitro.

 

Keywords: Cell microstructure; cell morphology; gene therapy; p53 gene; matrix attachment region (MAR); non-viral vector

 

ABSTRAK

Kanser selalu menimbulkan masalah besar yang mengancam kesihatan manusia. Kebelakangan ini, penggunaan terapi gen dalam penyelidikan kanser telah meningkat dengan ketara. Kajian ini bertujuan untuk membina sebuah rekombinan vektor ekspresi eukariot bukan virus, jenis liar, pEGFP-N1-p53/MAR dan mengesahkan mekanisme tindakan dalam sel kanser secara in vitro. Kajian ini memberikan satu strategi baru untuk terapi gen p53 melalui peraturan matriks pelekatan rantau (MAR), berpotensi meletakkan asas yang kukuh untuk penubuhan bioreaktor protein antikanser. Gen p53 diklon daripada darah periferi manusia dan gen MAR telah diamplifikasi daripada tisu hati ayam. Vektor ekspresi rekombinan eukariot pEGFP-N1-p53/MAR telah dibangunkan menggunakan sistem replikasi sendiri E. coli. LipofectamineTM 2000 telah digunakan sebagai ejen transfeksi untuk menghantar plasmid ke dalam titisan sel manusia karsinoma hepar (HEP3B). Kami membahagikan kumpulan seperti berikut: Sel kawalan negatif tanpa transfeksi plasmid, sel kawalan penghantaran transfeksi dengan vektor PEGFP-N1 dan sel uji kaji transfeksi dengan vektor pEGFP-N1-p53/MAR. Sel dalam telaga setiap kawalan sarana dan kumpulan uji kaji telah ditransfeksi dengan 1.6 μg plasmid dan 3 μL liposom. Morfologi sel setiap kumpulan dianalisis menggunakan mikroskop hijau pendarfluor pada 12, 24, 36 dan 48 jam. Kemudian, analisis statistik pada kadar apoptosis antara ketiga-tiga kumpulan telah dijalankan menggunakan perisian SPSS. Ultrastruktur sel telah diperhatikan melalui penghantaran elektron mikroskop selepas transfeksi selama 24 jam. Analisis morfologi menunjukkan bahawa sel kumpulan uji kaji telah dikecut dan dikurangkan saiznya serta sambungan intersel telah hilang. Di samping itu, kadar apoptosis dalam kumpulan uji kaji adalah jauh lebih tinggi daripada kumpulan kawalan dan mikrostruktur sel menunjukkan bahawa jasad heterokromatin dan apoptotik telah ditemui dalam kumpulan uji kaji. Kesimpulannya, berbanding dengan kumpulan kawalan, plasmid pEGFP-N1-p53/MAR berkesan menggalakkan sel apoptosis Hep3B secara in vitro.

 

Kata kunci: Gen p53; matriks pelekatan rantau (MAR); mikrostruktur sel; morfologi sel; terapi gen; vektor bukan virus

REFERENCES

 

Buyukpinarbasili, N., Gucin, Z., Ersoy, Y.E., Ilbak, A., Kadioqlu, H. & Muslumanoqlu M. 2016. p53 expression and relationship with MDM2 amplification in breast carcinomas. Ann. Diag. Pathol. 21: 29-34.

Bode, J., Kohwi, Y., Dickinson, L., Joh, T., Klehr, D., Mielke, C. & Kohwi-Shiqematsu, T. 1992. Biological significance of unwinding capability of nuclear matrix-associating DNAs. Science 255(5041): 195-197.

Choi, E.W., Seen, D.S., Song, Y.B., Son, H.S., Jung, N.C., Huh, W.K., Hahn, J.S., Kim, K., Jeong, J.Y. & Lee, T.G. 2012. AdHTS: A high-throughput system for generating recombinant adenoviruses. J. Biotechnol. 162(2-3): 246-252.

Cheng, A.C., Tsai, M.L., Liu, C.M., Lee, M.F., Naqabhushanam, K., Ho, C.T. & Pan, M.H. 2010. Garcinol inhibits cell growth in hepatocellular carcinoma Hep3B cells through induction of ROS-dependent apoptosis. Food Funct. 1(3): 301-307.

Forrester, W.C., van Genderen, C., Jenuwein, T. & Grosschedl, R. 1994. Dependence of enhancer-mediated transcription of the immunoglobulin mu gene on nuclear matrix attachment regions. Science 265(5176): 1221-1225.

Hacker, G. 2000. The morphology of apoptosis. Cell Tissue Res. 301(1): 5-17.

Hafner, A.M., Corthésy, B. & Merkle, H.P. 2013. Particulate formulations for the delivery of poly(I:C) as vaccine adjuvant. Adv. Drug. Deliv. Rev. 65(10): 1386-1399.

Kaplan, M.H., Zong, R.T., Herrscher, R.F., Scheuermann, R.H. & Tucker, P.W. 2001. Transcriptional activation by a matrix associating region-binding protein. J. Biol. I. Chem. 276(24): 21325-21330.

Kerr, J.F., Wyllie, A.H. & Currie, A.R. 1972. Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26(4): 239-257.

Ko, L.J. & Prives, C. 1996. p53: Puzzle and paradigm. Genes and Development 10(9): 1054-1572.

Levine, A.J. 1997. p53, the cellular gatekeeper for growth and division. Cell 88(3): 323-331.

Liu, X.Q., Du, J.Z., Zhang, C.P., Zhao, F., Yang, X.Z. & Wang, J. 2010. Brush-shaped polycation with poly(ethylenimine)- b-poly(ethylene glycol) side chains as highly efficient gene delivery vector. Int. J. Pharm. 392(1-2): 118-126.

Ljungrnan, M. 2000. Dial 9-1-1 for p53: Mechanisms of p53 activation by cellular stress. Neoplasia 2(3): 208-225.

Mandal, S., Rosso, N., Tiribelli, C., Scoles, G. & Krol, S. 2011. Targeted multicomponent polysomes for high efficiency, simultaneous anti-sense and gene delivery. Soft Matter. 7(19): 9424-9434.

Majno, G. & Joris, I. 1995. Apoptosis, oncosis and necrosis. An overview of cell death. Am. J. Pathol. 146(1): 3-15.

Naim, H.Y. 2013. Applications and challenges of multivalent recombinant vaccines. Hum. Vaccin. Immunother. 9(3): 457-461.

Ndoye, A., Merlin, J.L., Leroux, A., Dolivet, G., Erbacher, P., Behr, J.P., Berg, K. & Guillemin, F. 2004. Enhanced gene transfer and cell death following p53 gene transfer using photochemical internatisation of glucosylated PEI-DNA complexes. J. Gene Med. 6(8): 884-894.

Soussi, T. 2007. p53 alterations in human cancer: More questions than answer. Oncogene 26(15): 2145-2156.

Seth, P. 2005. Vector-mediated cancer gene therapy: An overview. Cancer Biol. Ther. 4(5): 512-517.

Saafi, E.L., Konarkowska, B., Zhang, S., Kistler, J. & Cooper, G.J. 2001. Ultrastructural evidence that apoptosis is the mechanism by which human amylin evokes death in RINm5F pancreatic islet beta-cells. Cell Biol. Int. 25(4): 339-350.

Soussi, T. & May, P. 1996. Structural aspects of the p53 protein in relation to gene evolution: a second look. J. Mol. Biol. 260(5): 623-637.

Soussi, T., Caron, de Fromental C. & May, P. 1990. Structural aspects of the p53 protein in relation to gene evolution. Oncogene 5(7): 945-952.

Wang, K., Huang, Q., Qiu, F. & Sui, M. 2015. Non-viral delivery systems for the application in p53 cancer gene therapy. Curr. Med. Chem. 22(35): 4118-4136.

Xu, C., Sui, M., Tang, J. & Shen, Y. 2011. What can we learn from virus in designing nonviral gene vectors. Chin. J. Polym. Sci. 29(3): 274-287.

Xu, L., Frederik, P., Pirollo, K.F., Tang, W.H., Rait, A., Xiang, L.M., Huang, W., Cruz, I., Yin, Y. & Chang, E.H. 2002. Self-assembly of a virus-mimicking nanostructure system for efficient tumor-targeted gene delivery. Hum. Gene Ther. 13(3): 469-481.

 

 

*Corresponding author; email: xueqinlei@l63.com

 

 

 

 

 

 

 

 

 

previous