Sains Malaysiana 47(9)(2018): 2141–2149

http://dx.doi.org/10.17576/jsm-2018-4709-23

 

Mechanical and Bioactive Properties of Mullite Reinforced Pseudowollastonite Biocomposite

(Sifat Mekanik dan Kebioaktifan Biokomposit Pseudowolastonit Diperkuat dengan Mulit)

 

FARAH ‘ATIQAH ABDUL AZAM1, ROSLINDA SHAMSUDIN1*, MIN HWEI NG2, ZALITA ZAINUDDIN1, MUHAMMAD AZMI ABDUL HAMID1 & RASHITA ABDUL RASHID3

 

1School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Tissue Engineering Centre, 12th Floor, Clinical Block, UKM Medical Centre, 56000 Cheras, Kuala Lumpur, Wilayah Persekutuan, Malaysia

 

3Mineral Research Centre, Minerals, and Geoscience Department, 31400 Ipoh, Perak Darul Ridzuan, Malaysia

Received: 14 March 2018/Accepted: 2 June 2018

 

ABSTRACT

 

Bioactive composites consist of pseudowollastonite and mullite synthesized from natural resources was developed for bone implant applications. To realize such applications, a mechanical test of these composites and in vitro bioactivity in SBF solution were studied. The present paper reports pseudowollastonite synthesized from the rice husk ash and limestone reinforced with 10, 20 and 30 wt. % of mullite. Influence of sintering temperature, phase composition, morphology towards mechanical properties of various pseudowollastonite-mullite (PSW-M) composites was examined prior to the bioactivity test. It was found that pseudowollastonite with the addition of 20 wt. % of mullite sintered at 1150°C gave the best result for diametral tensile strength (DTS) and hardness with the value of 8.8 ± 0.15 MPa and 3.79 ± 0.13 GPa, respectively. The obvious increment in the mechanical strength was due to the formation of liquid phase CaAl2O3 during sintering at 1150°C. In addition, the formation of fibrous apatite (HA) layer of amorphous calcium phosphate (ACP) with Ca/P ratio 1.8 on PSW20M sample confirmed the good bioactivity of the composite.

 

Keywords: Bioactivity; mechanical; mullite; pseudowollastonite

 

ABSTRAK

 

Komposit bioaktif yang terdiri daripada pseudowolastonit dan mulit disintesis daripada sumber semula jadi telah dibangunkan untuk aplikasi implan tulang. Untuk merealisasikan aplikasi ini, ujian mekanik dan kebioaktifan secara in vitro dalam larutan badan tersimulasi (SBF) bagi komposit ini telah dijalankan. Kajian pada kali ini melaporkan pseudowolastonit yang disintesis daripada abu sekam padi dan batu kapur yang diperkuat dengan 10, 20 dan 30 % bt. kandungan mulit. Pengaruh suhu sinteran, komposisi, fasa dan morfologi terhadap sifat mekanik komposit pseudowolastonit-mulit (PSW-M) telah dianalisis sebelum ujian kebioaktifan dijalankan. Keputusan mendapati pseudowolastonit dengan penambahan 20 % bt. mulit yang disinter pada suhu 1150°C memberikan hasil yang terbaik untuk kekuatan regangan diameter (DTS) dan kekerasan masing-masing dengan nilai 8.8 ± 0.15 MPa dan 3.79 ± 0.13 GPa. Peningkatan kekuatan mekanik yang ketara ini adalah disebabkan oleh pembentukan fasa cair CaAl2O3 semasa proses sinteran pada suhu 1150°C. Di samping itu, pembentukan lapisan apatit (HA) jenis kalsium fosfat amorfus (ACP) dengan nisbah (Ca / P: 1.8) bagi sampel PSW20M pada hari ke-7 membuktikan kebioaktifan yang baik daripada komposit ini.

 

Kata kunci: Kebioaktifan; mekanik; mulit; pseudowolastonit

REFERENCES

Anjaneyulu, U. & Sasikumar, S. 2014. Bioactive nanocrystalline wollastonite synthesized by sol-gel combustion. Materials Science 37(2): 207-212.

ASTM C 496/C 496M - 04. 2011. Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. Annual Book of ASTM Standards Volume 04.02. pp. 1-5.

Bakr, I.M. 2012. Sintering of mullite with the aid of wollastonite. InterCeram: International Ceramic Review. pp. 58-62.

Best, S.M., Porter, A.E., Thian, E.S. & Huang, J. 2008. Bioceramics: Past, present and for the future. Journal of the European Ceramic Society 28(7): 1319-1327.

Bieniawski, Z.T. & Hawkes, I. 1978. Suggested methods for determining tensile strength of rock materials. International Society for Rock Mechanics Commission on Standardization of Laboratory and Field Tests 15: 99-103.

Cannillo, V., Colmenares-Angulo, J., Lusvarghi, L., Pierli, F. & Sampath, S. 2009. In vitro characterisation of plasma-sprayed apatite/wollastonite glass-ceramic biocoatings on titanium alloys. Journal of the European Ceramic Society 29(9): 1665-1677.

Chen, C.C., Ho, C.C., Lin, S.Y. & Ding, S.J. 2015. Green synthesis of calcium silicate bioceramic powders. Ceramics International 41(4): 5445-5453.

De Aza, P.N., De Aza, A.H., Herrera, A., Lopez-Prats, F.A. & Pena, P. 2006. Influence of sterilization techniques on the in vitro bioactivity of pseudowollastonite. Journal of the American Ceramic Society 89(8): 2619-2624.

De La Casa-Lillo, M.A., Velásquez, P. & De Aza, P.N. 2011. Influence of thermal treatment on the in vitro bioactivity of wollastonite materials. Journal of Materials Science: Materials in Medicine 22(4): 907-915.

Ding, S.J., Shie, M.Y. & Wang, C.Y. 2009. Novel fast-setting calcium silicate bone cements with high bioactivity and enhanced osteogenesis in vitro. Journal of Materials Chemistry 19(8): 1183-1190.

Dorozhkin, S.V. 2007. Biomaterials for medicine. Glass and Ceramics 64: 442-447.

Elghazel, A., Taktak, R. & Bouaziz, J. 2015. Determination of elastic modulus, tensile strength and fracture toughness of bioceramics using the flattened Brazilian disc specimen: Analytical and numerical results. Ceramics International 41(9): 12340-12348.

Engqvist, H., Edlund, S., Gomez-Ortega, G., Loof, J. & Hermansson, L. 2006. In vitro mechanical properties of a calcium silicate based bone void filler. Key Engineering Materials 309-311: 829-832.

Gautier, S., Champion, E. & Bernache-Assollant, D. 1997. Processing, microstructure and toughness of Al2O3 platelet-reinforced hydroxyapatite. Journal of the European Ceramic Society 17(11): 1361-1369.

Hamisah, I., Shamsudin, R., Abdul Hamid, M.A. & Rozidawati, A. 2016. Mechanism of apatite formation on β-wollastonite sample surface synthesized from rice husk ash. Sains Malaysiana 45(12): 1779-1785.

Hamisah, I., Shamsudin, R., Abdul Hamid, M.A. & Jalar, A. 2013. Synthesis and characterization of nano-wollastonite from rice husk ash and limestone. Materials Science Forum 756: 43-47.

Harabi, A. & Chehlatt, S. 2013. Preparation process of a highly resistant wollastonite bioceramics using local raw materials. Journal of Thermal Analysis and Calorimetry 111(1): 203- 211.

Horng, Y.J. & Min, H.H. 1994. Fabrication and mechanical properties of hydroxyapatite-alumina composites. Materials Science and Engineering: C 2(1-2): 77-81.

Hsu, Y.H., Turner, I.G. & Miles, A.W. 2007. Mechanical characterization of dense calcium phosphate bioceramics with interconnected porosity. Journal of Materials Science: Materials in Medicine 18(12): 2319-2329.

Ji, H. & Marquis, P.M. 1992. Preparation and characterization of Al2O3 reinforced hydroxyapatite. Biomaterials 13(11): 744-748.

Kim, H.W., Kong, Y.M., Koh, Y.H., Kim, H.E., Kim, H.M. & Ko, J.S. 2003. Pressureless sintering and mechanical and biological properties of fluor-hydroxyapatite composites with zirconia. Journal of the American Ceramic Society 86(12): 2019-2026.

Kokubo, T. & Takadama, H. 2006. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15): 2907-2915.

Liu, X. & Ding, C. 2002. Characterization of plasma sprayed wollastonite powder and coatings. Surface and Coatings Technology 153(2001): 173-177.

Maitra, S., Rahaman, A., Sarkar, A. & Tarafdar, A. 2006. Zirconia-mullite materials prepared from semi-colloidal route derived precursors. Ceramics International 32(2): 201-206.

Marghussian, V.K. & Sheikh-Mehdi Mesgar, A. 2000. Effects of composition on crystallization behaviour and mechanical 2149

properties of bioactive glass-ceramics in the MgO-CaO-SiO2-P2O5 system. Ceramics International 26(4): 415-420.

Nath, S., Dubey, A.K. & Basu, B. 2012. Mechanical properties of novel calcium phosphate-mullite biocomposites. Journal of Biomaterials Applications 27(1): 67-78.

Nath, S., Kalmodia, S. & Basu, B. 2011. In vitro biocompatibility of novel biphasic calcium phosphate-mullite composites. Journal of Biomaterials Applications 27(5): 497-509.

Nath, S., Kalmodia, S. & Basu, B. 2010. Densification, phase stability and in vitro biocompatibility property of hydroxyapatite-10 wt. % silver composites. Journal of Materials Science. Materials in Medicine 21(4): 1273-1287.

Nath, S., Biswas, K. & Basu, B. 2008. Phase stability and microstructure development in hydroxyapatite-mullite system. Scripta Materialia 58(12): 1054-1057.

Osendi, M.I. & Baudı ´n, C. 1983. Mechanical properties of mullite materials. Journal of the American Ceramic Society 66(10): 699-703.

Park, J.B. & Bronzino, J.D. 2002. Biomaterials: Principles and Applications. Boca Raton: CRC Press.

Pilliar, R.M., Filiaggi, M.J., Wells, J.D., Grynpas, M.D. & Kandel, R.A. 2001. Porous calcium polyphosphate scaffolds for bone substitute applications-in vitro characterization. Biomaterials 22: 963-972.

Schneider, H., Schreuer, J. & Hildmann, B. 2008. Structure and properties of mullite- A review. Journal of the European Ceramic Society 28(2): 329-344.

Shirazi, F.S., Mehrali, M., Oshkour, A.A., Metselaar, H.S.C., Kadri, N.A. & Abu Osman, N.A. 2014. Mechanical and physical properties of calcium silicate/alumina composite for biomedical engineering applications. Journal of the Mechanical Behavior of Biomedical Materials 30: 168-175.

Silva, V.V., Lameiras, F.S. & Domingues, R.Z. 2001. Microstructural and mechanical study of zirconia-hydroxyapatite (ZH) composite ceramics for biomedical applications. Composites Science and Technology 61(2): 301-310.

Zhang, J., Iwasa, M., Kotobuki, N., Tanaka, T., Hirose, M., Ohgushi, H. & Jiang, D. 2006. Fabrication of hydroxyapatite-zirconia composites for orthopedic applications. Journal of the American Ceramic Society 89(11): 3348-3355.

Zhao, J.C., Smith, J.F., Schiffman, R.S. & Merchant, S.M. 2007. Methods for Phase Diagram Determination. New York: Elsevier.

 

 

*Corresponding author; email: linda@ukm.edu.my

 

 

 

 

 

 

 

 

 

previous